Isotope fractionation of Li and K in silicate liquids by Soret diffusion

Laboratory experiments were used to determine the thermal (Soret) isotopic fractionation of lithium and potassium in a basalt melt, which adds elements with ionic charge +1 to the list of elements for which thermal isotopic fractionations in silicate liquids have been previously reported (i.e., Ca,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2014-08, Vol.138, p.136-145
Hauptverfasser: Richter, Frank M., Bruce Watson, E., Chaussidon, Marc, Mendybaev, Ruslan, Christensen, John N., Qiu, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue
container_start_page 136
container_title Geochimica et cosmochimica acta
container_volume 138
creator Richter, Frank M.
Bruce Watson, E.
Chaussidon, Marc
Mendybaev, Ruslan
Christensen, John N.
Qiu, Lin
description Laboratory experiments were used to determine the thermal (Soret) isotopic fractionation of lithium and potassium in a basalt melt, which adds elements with ionic charge +1 to the list of elements for which thermal isotopic fractionations in silicate liquids have been previously reported (i.e., Ca, Mg, Fe, Si, O, Sr, Hf, and U). The new experiments were run at a moderate pressure of about 1.5GPa in a piston cylinder apparatus in order to avoid gas bubbles once the sample was melted. The samples were displaced slightly below the hot spot of the piston cylinder assembly graphite furnace so that there would be a temperature difference of about 125°C across the samples while molten. The thermal isotopic fractionation factor Ω (per mil fractionation per 100°C per one atomic mass unit difference) was found to be 6.0 for lithium isotopes and 1.1 for potassium isotopes. The isotopic fractionation in both cases resulted in the heavy isotopes becoming enriched at the cold end. The expanded data set of thermal isotopic fractionation in silicate liquids is used to evaluate the degree to which recently proposed parameterizations are able to reproduce the experimental data.
doi_str_mv 10.1016/j.gca.2014.04.012
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01766444v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001670371400235X</els_id><sourcerecordid>1551090930</sourcerecordid><originalsourceid>FETCH-LOGICAL-a420t-bd45f26d3b9267507ea1486fe52ef6908a58425d0ce6db6526e49a03b6b7d1173</originalsourceid><addsrcrecordid>eNqFkU9rGzEQxUVpIW6SD5CbjslhnZFWf3bJKZi0NjXkkOYstNKokdmsHGlt8LfPui45pvCYgeH3hmEeIVcM5gyYut3M_zg758DEHCYx_oXMWKN51cq6_kpmMEGVhlqfke-lbABASwkzslyVNKYt0pCtG2Ma7LHQFOg6Ujt4-ovGgZbYR2dHpH1820VfaHegTynjSH0MYVcmywX5Fmxf8PJfPyfPPx5-L5bV-vHnanG_rqzgMFadFzJw5euu5UpL0GiZaFRAyTGoFhorG8GlB4fKd0pyhaK1UHeq054xXZ-Tm9PeF9ubbY6vNh9MstEs79fmOAOmlRJC7NnEXp_YbU5vOyyjeY3FYd_bAdOuGKah1U1T1_B_VEoGLbR_UXZCXU6lZAwfZzAwxzDMxkxhmGMYBiYxPnnuTh6cXrOPmE1xEQeHPmZ0o_EpfuJ-B1sQjxM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551090930</pqid></control><display><type>article</type><title>Isotope fractionation of Li and K in silicate liquids by Soret diffusion</title><source>Access via ScienceDirect (Elsevier)</source><creator>Richter, Frank M. ; Bruce Watson, E. ; Chaussidon, Marc ; Mendybaev, Ruslan ; Christensen, John N. ; Qiu, Lin</creator><creatorcontrib>Richter, Frank M. ; Bruce Watson, E. ; Chaussidon, Marc ; Mendybaev, Ruslan ; Christensen, John N. ; Qiu, Lin</creatorcontrib><description>Laboratory experiments were used to determine the thermal (Soret) isotopic fractionation of lithium and potassium in a basalt melt, which adds elements with ionic charge +1 to the list of elements for which thermal isotopic fractionations in silicate liquids have been previously reported (i.e., Ca, Mg, Fe, Si, O, Sr, Hf, and U). The new experiments were run at a moderate pressure of about 1.5GPa in a piston cylinder apparatus in order to avoid gas bubbles once the sample was melted. The samples were displaced slightly below the hot spot of the piston cylinder assembly graphite furnace so that there would be a temperature difference of about 125°C across the samples while molten. The thermal isotopic fractionation factor Ω (per mil fractionation per 100°C per one atomic mass unit difference) was found to be 6.0 for lithium isotopes and 1.1 for potassium isotopes. The isotopic fractionation in both cases resulted in the heavy isotopes becoming enriched at the cold end. The expanded data set of thermal isotopic fractionation in silicate liquids is used to evaluate the degree to which recently proposed parameterizations are able to reproduce the experimental data.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2014.04.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cylinders ; Earth Sciences ; Fractionation ; Hafnium ; Isotopes ; Liquids ; Parametrization ; Pistons ; Sciences of the Universe ; Silicates</subject><ispartof>Geochimica et cosmochimica acta, 2014-08, Vol.138, p.136-145</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a420t-bd45f26d3b9267507ea1486fe52ef6908a58425d0ce6db6526e49a03b6b7d1173</citedby><cites>FETCH-LOGICAL-a420t-bd45f26d3b9267507ea1486fe52ef6908a58425d0ce6db6526e49a03b6b7d1173</cites><orcidid>0000-0001-8475-0690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gca.2014.04.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01766444$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Richter, Frank M.</creatorcontrib><creatorcontrib>Bruce Watson, E.</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Mendybaev, Ruslan</creatorcontrib><creatorcontrib>Christensen, John N.</creatorcontrib><creatorcontrib>Qiu, Lin</creatorcontrib><title>Isotope fractionation of Li and K in silicate liquids by Soret diffusion</title><title>Geochimica et cosmochimica acta</title><description>Laboratory experiments were used to determine the thermal (Soret) isotopic fractionation of lithium and potassium in a basalt melt, which adds elements with ionic charge +1 to the list of elements for which thermal isotopic fractionations in silicate liquids have been previously reported (i.e., Ca, Mg, Fe, Si, O, Sr, Hf, and U). The new experiments were run at a moderate pressure of about 1.5GPa in a piston cylinder apparatus in order to avoid gas bubbles once the sample was melted. The samples were displaced slightly below the hot spot of the piston cylinder assembly graphite furnace so that there would be a temperature difference of about 125°C across the samples while molten. The thermal isotopic fractionation factor Ω (per mil fractionation per 100°C per one atomic mass unit difference) was found to be 6.0 for lithium isotopes and 1.1 for potassium isotopes. The isotopic fractionation in both cases resulted in the heavy isotopes becoming enriched at the cold end. The expanded data set of thermal isotopic fractionation in silicate liquids is used to evaluate the degree to which recently proposed parameterizations are able to reproduce the experimental data.</description><subject>Cylinders</subject><subject>Earth Sciences</subject><subject>Fractionation</subject><subject>Hafnium</subject><subject>Isotopes</subject><subject>Liquids</subject><subject>Parametrization</subject><subject>Pistons</subject><subject>Sciences of the Universe</subject><subject>Silicates</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU9rGzEQxUVpIW6SD5CbjslhnZFWf3bJKZi0NjXkkOYstNKokdmsHGlt8LfPui45pvCYgeH3hmEeIVcM5gyYut3M_zg758DEHCYx_oXMWKN51cq6_kpmMEGVhlqfke-lbABASwkzslyVNKYt0pCtG2Ma7LHQFOg6Ujt4-ovGgZbYR2dHpH1820VfaHegTynjSH0MYVcmywX5Fmxf8PJfPyfPPx5-L5bV-vHnanG_rqzgMFadFzJw5euu5UpL0GiZaFRAyTGoFhorG8GlB4fKd0pyhaK1UHeq054xXZ-Tm9PeF9ubbY6vNh9MstEs79fmOAOmlRJC7NnEXp_YbU5vOyyjeY3FYd_bAdOuGKah1U1T1_B_VEoGLbR_UXZCXU6lZAwfZzAwxzDMxkxhmGMYBiYxPnnuTh6cXrOPmE1xEQeHPmZ0o_EpfuJ-B1sQjxM</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Richter, Frank M.</creator><creator>Bruce Watson, E.</creator><creator>Chaussidon, Marc</creator><creator>Mendybaev, Ruslan</creator><creator>Christensen, John N.</creator><creator>Qiu, Lin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid></search><sort><creationdate>20140801</creationdate><title>Isotope fractionation of Li and K in silicate liquids by Soret diffusion</title><author>Richter, Frank M. ; Bruce Watson, E. ; Chaussidon, Marc ; Mendybaev, Ruslan ; Christensen, John N. ; Qiu, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a420t-bd45f26d3b9267507ea1486fe52ef6908a58425d0ce6db6526e49a03b6b7d1173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cylinders</topic><topic>Earth Sciences</topic><topic>Fractionation</topic><topic>Hafnium</topic><topic>Isotopes</topic><topic>Liquids</topic><topic>Parametrization</topic><topic>Pistons</topic><topic>Sciences of the Universe</topic><topic>Silicates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Frank M.</creatorcontrib><creatorcontrib>Bruce Watson, E.</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Mendybaev, Ruslan</creatorcontrib><creatorcontrib>Christensen, John N.</creatorcontrib><creatorcontrib>Qiu, Lin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Frank M.</au><au>Bruce Watson, E.</au><au>Chaussidon, Marc</au><au>Mendybaev, Ruslan</au><au>Christensen, John N.</au><au>Qiu, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isotope fractionation of Li and K in silicate liquids by Soret diffusion</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>138</volume><spage>136</spage><epage>145</epage><pages>136-145</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Laboratory experiments were used to determine the thermal (Soret) isotopic fractionation of lithium and potassium in a basalt melt, which adds elements with ionic charge +1 to the list of elements for which thermal isotopic fractionations in silicate liquids have been previously reported (i.e., Ca, Mg, Fe, Si, O, Sr, Hf, and U). The new experiments were run at a moderate pressure of about 1.5GPa in a piston cylinder apparatus in order to avoid gas bubbles once the sample was melted. The samples were displaced slightly below the hot spot of the piston cylinder assembly graphite furnace so that there would be a temperature difference of about 125°C across the samples while molten. The thermal isotopic fractionation factor Ω (per mil fractionation per 100°C per one atomic mass unit difference) was found to be 6.0 for lithium isotopes and 1.1 for potassium isotopes. The isotopic fractionation in both cases resulted in the heavy isotopes becoming enriched at the cold end. The expanded data set of thermal isotopic fractionation in silicate liquids is used to evaluate the degree to which recently proposed parameterizations are able to reproduce the experimental data.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2014.04.012</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 2014-08, Vol.138, p.136-145
issn 0016-7037
1872-9533
language eng
recordid cdi_hal_primary_oai_HAL_hal_01766444v1
source Access via ScienceDirect (Elsevier)
subjects Cylinders
Earth Sciences
Fractionation
Hafnium
Isotopes
Liquids
Parametrization
Pistons
Sciences of the Universe
Silicates
title Isotope fractionation of Li and K in silicate liquids by Soret diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isotope%20fractionation%20of%20Li%20and%20K%20in%20silicate%20liquids%20by%20Soret%20diffusion&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Richter,%20Frank%20M.&rft.date=2014-08-01&rft.volume=138&rft.spage=136&rft.epage=145&rft.pages=136-145&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2014.04.012&rft_dat=%3Cproquest_hal_p%3E1551090930%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551090930&rft_id=info:pmid/&rft_els_id=S001670371400235X&rfr_iscdi=true