Isotope fractionation of Li and K in silicate liquids by Soret diffusion
Laboratory experiments were used to determine the thermal (Soret) isotopic fractionation of lithium and potassium in a basalt melt, which adds elements with ionic charge +1 to the list of elements for which thermal isotopic fractionations in silicate liquids have been previously reported (i.e., Ca,...
Gespeichert in:
Veröffentlicht in: | Geochimica et cosmochimica acta 2014-08, Vol.138, p.136-145 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 145 |
---|---|
container_issue | |
container_start_page | 136 |
container_title | Geochimica et cosmochimica acta |
container_volume | 138 |
creator | Richter, Frank M. Bruce Watson, E. Chaussidon, Marc Mendybaev, Ruslan Christensen, John N. Qiu, Lin |
description | Laboratory experiments were used to determine the thermal (Soret) isotopic fractionation of lithium and potassium in a basalt melt, which adds elements with ionic charge +1 to the list of elements for which thermal isotopic fractionations in silicate liquids have been previously reported (i.e., Ca, Mg, Fe, Si, O, Sr, Hf, and U). The new experiments were run at a moderate pressure of about 1.5GPa in a piston cylinder apparatus in order to avoid gas bubbles once the sample was melted. The samples were displaced slightly below the hot spot of the piston cylinder assembly graphite furnace so that there would be a temperature difference of about 125°C across the samples while molten. The thermal isotopic fractionation factor Ω (per mil fractionation per 100°C per one atomic mass unit difference) was found to be 6.0 for lithium isotopes and 1.1 for potassium isotopes. The isotopic fractionation in both cases resulted in the heavy isotopes becoming enriched at the cold end. The expanded data set of thermal isotopic fractionation in silicate liquids is used to evaluate the degree to which recently proposed parameterizations are able to reproduce the experimental data. |
doi_str_mv | 10.1016/j.gca.2014.04.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01766444v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001670371400235X</els_id><sourcerecordid>1551090930</sourcerecordid><originalsourceid>FETCH-LOGICAL-a420t-bd45f26d3b9267507ea1486fe52ef6908a58425d0ce6db6526e49a03b6b7d1173</originalsourceid><addsrcrecordid>eNqFkU9rGzEQxUVpIW6SD5CbjslhnZFWf3bJKZi0NjXkkOYstNKokdmsHGlt8LfPui45pvCYgeH3hmEeIVcM5gyYut3M_zg758DEHCYx_oXMWKN51cq6_kpmMEGVhlqfke-lbABASwkzslyVNKYt0pCtG2Ma7LHQFOg6Ujt4-ovGgZbYR2dHpH1820VfaHegTynjSH0MYVcmywX5Fmxf8PJfPyfPPx5-L5bV-vHnanG_rqzgMFadFzJw5euu5UpL0GiZaFRAyTGoFhorG8GlB4fKd0pyhaK1UHeq054xXZ-Tm9PeF9ubbY6vNh9MstEs79fmOAOmlRJC7NnEXp_YbU5vOyyjeY3FYd_bAdOuGKah1U1T1_B_VEoGLbR_UXZCXU6lZAwfZzAwxzDMxkxhmGMYBiYxPnnuTh6cXrOPmE1xEQeHPmZ0o_EpfuJ-B1sQjxM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551090930</pqid></control><display><type>article</type><title>Isotope fractionation of Li and K in silicate liquids by Soret diffusion</title><source>Access via ScienceDirect (Elsevier)</source><creator>Richter, Frank M. ; Bruce Watson, E. ; Chaussidon, Marc ; Mendybaev, Ruslan ; Christensen, John N. ; Qiu, Lin</creator><creatorcontrib>Richter, Frank M. ; Bruce Watson, E. ; Chaussidon, Marc ; Mendybaev, Ruslan ; Christensen, John N. ; Qiu, Lin</creatorcontrib><description>Laboratory experiments were used to determine the thermal (Soret) isotopic fractionation of lithium and potassium in a basalt melt, which adds elements with ionic charge +1 to the list of elements for which thermal isotopic fractionations in silicate liquids have been previously reported (i.e., Ca, Mg, Fe, Si, O, Sr, Hf, and U). The new experiments were run at a moderate pressure of about 1.5GPa in a piston cylinder apparatus in order to avoid gas bubbles once the sample was melted. The samples were displaced slightly below the hot spot of the piston cylinder assembly graphite furnace so that there would be a temperature difference of about 125°C across the samples while molten. The thermal isotopic fractionation factor Ω (per mil fractionation per 100°C per one atomic mass unit difference) was found to be 6.0 for lithium isotopes and 1.1 for potassium isotopes. The isotopic fractionation in both cases resulted in the heavy isotopes becoming enriched at the cold end. The expanded data set of thermal isotopic fractionation in silicate liquids is used to evaluate the degree to which recently proposed parameterizations are able to reproduce the experimental data.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2014.04.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cylinders ; Earth Sciences ; Fractionation ; Hafnium ; Isotopes ; Liquids ; Parametrization ; Pistons ; Sciences of the Universe ; Silicates</subject><ispartof>Geochimica et cosmochimica acta, 2014-08, Vol.138, p.136-145</ispartof><rights>2014 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a420t-bd45f26d3b9267507ea1486fe52ef6908a58425d0ce6db6526e49a03b6b7d1173</citedby><cites>FETCH-LOGICAL-a420t-bd45f26d3b9267507ea1486fe52ef6908a58425d0ce6db6526e49a03b6b7d1173</cites><orcidid>0000-0001-8475-0690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gca.2014.04.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01766444$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Richter, Frank M.</creatorcontrib><creatorcontrib>Bruce Watson, E.</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Mendybaev, Ruslan</creatorcontrib><creatorcontrib>Christensen, John N.</creatorcontrib><creatorcontrib>Qiu, Lin</creatorcontrib><title>Isotope fractionation of Li and K in silicate liquids by Soret diffusion</title><title>Geochimica et cosmochimica acta</title><description>Laboratory experiments were used to determine the thermal (Soret) isotopic fractionation of lithium and potassium in a basalt melt, which adds elements with ionic charge +1 to the list of elements for which thermal isotopic fractionations in silicate liquids have been previously reported (i.e., Ca, Mg, Fe, Si, O, Sr, Hf, and U). The new experiments were run at a moderate pressure of about 1.5GPa in a piston cylinder apparatus in order to avoid gas bubbles once the sample was melted. The samples were displaced slightly below the hot spot of the piston cylinder assembly graphite furnace so that there would be a temperature difference of about 125°C across the samples while molten. The thermal isotopic fractionation factor Ω (per mil fractionation per 100°C per one atomic mass unit difference) was found to be 6.0 for lithium isotopes and 1.1 for potassium isotopes. The isotopic fractionation in both cases resulted in the heavy isotopes becoming enriched at the cold end. The expanded data set of thermal isotopic fractionation in silicate liquids is used to evaluate the degree to which recently proposed parameterizations are able to reproduce the experimental data.</description><subject>Cylinders</subject><subject>Earth Sciences</subject><subject>Fractionation</subject><subject>Hafnium</subject><subject>Isotopes</subject><subject>Liquids</subject><subject>Parametrization</subject><subject>Pistons</subject><subject>Sciences of the Universe</subject><subject>Silicates</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU9rGzEQxUVpIW6SD5CbjslhnZFWf3bJKZi0NjXkkOYstNKokdmsHGlt8LfPui45pvCYgeH3hmEeIVcM5gyYut3M_zg758DEHCYx_oXMWKN51cq6_kpmMEGVhlqfke-lbABASwkzslyVNKYt0pCtG2Ma7LHQFOg6Ujt4-ovGgZbYR2dHpH1820VfaHegTynjSH0MYVcmywX5Fmxf8PJfPyfPPx5-L5bV-vHnanG_rqzgMFadFzJw5euu5UpL0GiZaFRAyTGoFhorG8GlB4fKd0pyhaK1UHeq054xXZ-Tm9PeF9ubbY6vNh9MstEs79fmOAOmlRJC7NnEXp_YbU5vOyyjeY3FYd_bAdOuGKah1U1T1_B_VEoGLbR_UXZCXU6lZAwfZzAwxzDMxkxhmGMYBiYxPnnuTh6cXrOPmE1xEQeHPmZ0o_EpfuJ-B1sQjxM</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Richter, Frank M.</creator><creator>Bruce Watson, E.</creator><creator>Chaussidon, Marc</creator><creator>Mendybaev, Ruslan</creator><creator>Christensen, John N.</creator><creator>Qiu, Lin</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid></search><sort><creationdate>20140801</creationdate><title>Isotope fractionation of Li and K in silicate liquids by Soret diffusion</title><author>Richter, Frank M. ; Bruce Watson, E. ; Chaussidon, Marc ; Mendybaev, Ruslan ; Christensen, John N. ; Qiu, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a420t-bd45f26d3b9267507ea1486fe52ef6908a58425d0ce6db6526e49a03b6b7d1173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cylinders</topic><topic>Earth Sciences</topic><topic>Fractionation</topic><topic>Hafnium</topic><topic>Isotopes</topic><topic>Liquids</topic><topic>Parametrization</topic><topic>Pistons</topic><topic>Sciences of the Universe</topic><topic>Silicates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Frank M.</creatorcontrib><creatorcontrib>Bruce Watson, E.</creatorcontrib><creatorcontrib>Chaussidon, Marc</creatorcontrib><creatorcontrib>Mendybaev, Ruslan</creatorcontrib><creatorcontrib>Christensen, John N.</creatorcontrib><creatorcontrib>Qiu, Lin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Frank M.</au><au>Bruce Watson, E.</au><au>Chaussidon, Marc</au><au>Mendybaev, Ruslan</au><au>Christensen, John N.</au><au>Qiu, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isotope fractionation of Li and K in silicate liquids by Soret diffusion</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>138</volume><spage>136</spage><epage>145</epage><pages>136-145</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Laboratory experiments were used to determine the thermal (Soret) isotopic fractionation of lithium and potassium in a basalt melt, which adds elements with ionic charge +1 to the list of elements for which thermal isotopic fractionations in silicate liquids have been previously reported (i.e., Ca, Mg, Fe, Si, O, Sr, Hf, and U). The new experiments were run at a moderate pressure of about 1.5GPa in a piston cylinder apparatus in order to avoid gas bubbles once the sample was melted. The samples were displaced slightly below the hot spot of the piston cylinder assembly graphite furnace so that there would be a temperature difference of about 125°C across the samples while molten. The thermal isotopic fractionation factor Ω (per mil fractionation per 100°C per one atomic mass unit difference) was found to be 6.0 for lithium isotopes and 1.1 for potassium isotopes. The isotopic fractionation in both cases resulted in the heavy isotopes becoming enriched at the cold end. The expanded data set of thermal isotopic fractionation in silicate liquids is used to evaluate the degree to which recently proposed parameterizations are able to reproduce the experimental data.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2014.04.012</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8475-0690</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7037 |
ispartof | Geochimica et cosmochimica acta, 2014-08, Vol.138, p.136-145 |
issn | 0016-7037 1872-9533 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01766444v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Cylinders Earth Sciences Fractionation Hafnium Isotopes Liquids Parametrization Pistons Sciences of the Universe Silicates |
title | Isotope fractionation of Li and K in silicate liquids by Soret diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isotope%20fractionation%20of%20Li%20and%20K%20in%20silicate%20liquids%20by%20Soret%20diffusion&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Richter,%20Frank%20M.&rft.date=2014-08-01&rft.volume=138&rft.spage=136&rft.epage=145&rft.pages=136-145&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2014.04.012&rft_dat=%3Cproquest_hal_p%3E1551090930%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551090930&rft_id=info:pmid/&rft_els_id=S001670371400235X&rfr_iscdi=true |