Comparing Three Clustering-based Scheduling Methods for Energy-Aware Rapid Design of MP2SoCs

In recent years, the Electronic Design Automation (EDA) community shifted spotlights from performance to energy efficiency. Consequently, energy consumption becomes a key criterion to take into consideration during Design Space Exploration (DSE). Finding a trade-off between energy consumption and pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of signal processing systems 2018-04, Vol.90 (4), p.537-570
Hauptverfasser: Ammar, Manel, Baklouti, Mouna, Pelcat, Maxime, Desnos, Karol, Abid, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, the Electronic Design Automation (EDA) community shifted spotlights from performance to energy efficiency. Consequently, energy consumption becomes a key criterion to take into consideration during Design Space Exploration (DSE). Finding a trade-off between energy consumption and performance early in the design flow in order to satisfy time-to-market is a design challenge of EDA tools. In this paper, we propose the Energy-aWAre Rapid Design of MP2SoC (EWARDS) framework. The EWARDS framework aims at exploring, at design time, the performance and energy capabilities of modern Massively Parallel Multi-Processors System-on-Chip (MP2SoC). The key contribution of the proposed framework is the implementation of an energy-aware scheduling process, named P R E E S M P E , that combines state-of-the-art power management techniques together with Clustering-based Scheduling. The scheduling process is integrated into a Model-Driven Engineering (MDE)-based DSE approach to optimize both performance and energy efficiency in MP2SoC. Moreover, EWARDS extends the Modeling and Analysis of Real-Time and Embedded systems (MARTE) profile with power aspects of MP2SoC systems providing a high-level design entry. To demonstrate the efficiency of the proposed approach, we conducted experiments using the H.263 codec and the FFT algorithm. The obtained results demonstrate that the energy-aware scheduling process can effectively save energy in MP2SoC systems. They also confirmed that our MDE-based approach accelerates the DSE process while generating energy-efficient design decisions.
ISSN:1939-8018
1939-8115
DOI:10.1007/s11265-017-1261-7