A robust set approach for mobile robot localization in ambient environment
Mobile robot localization consists in estimating the robot coordinates using real-time measurements. In ambient environment context, data can come both from the robot on-board sensors and from environment objects, mobile or not, able to sense the robot. The paper considers localization problem as a...
Gespeichert in:
Veröffentlicht in: | Autonomous robots 2019-03, Vol.43 (3), p.557-573 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 573 |
---|---|
container_issue | 3 |
container_start_page | 557 |
container_title | Autonomous robots |
container_volume | 43 |
creator | Colle, Etienne Galerne, Simon |
description | Mobile robot localization consists in estimating the robot coordinates using real-time measurements. In ambient environment context, data can come both from the robot on-board sensors and from environment objects, mobile or not, able to sense the robot. The paper considers localization problem as a nonlinear bounded-error estimation of the state vector. The components of the state vector are the robot coordinates as well as the 2D position and orientation. The approach based on interval analysis can satisfy the needs of ambient environment by easily taking account a heterogeneous set and a variable number of measurements. Bounded-error state estimation can be an alternative to particle filtering which is sensitive to non-consistent measures, large measure errors, and drift of evolution model. The paper addresses the theoretical formulation of the set-membership approach and the application to the estimation of the robot localization. Additional treatments are added to the estimator in order to meet more realistic conditions. Treatments aim at reducing the effects of disruptive events: outliers, model inaccuracies or model drift and robot kidnapping. Simulation results show the contribution of each step of the estimator. |
doi_str_mv | 10.1007/s10514-018-9727-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01758277v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2191087258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-2198f33c09ce9442044689865b36f97cd092110135deaa95ffbbafbae8002e673</originalsourceid><addsrcrecordid>eNp1kM1OxCAUhYnRxPHnAdyRuHKBXqAUWE4m6mgmcaNrQjvUYdKWETqT6NNLU6MrV5dcvnNy7kHoisItBZB3iYKgBQGqiJZMkuIIzaiQnEjB5DGagWaaCKH5KTpLaQsAWgLM0PMcx1Dt04CTG7Dd7WKw9QY3IeIuVL5143cYcBtq2_ovO_jQY99j21Xe9QN2_cHH0Hf5fYFOGtsmd_kzz9Hbw_3rYklWL49Pi_mK1FzzgTCqVcN5Dbp2uigYFEWptCpFxctGy3qdo1IKlIu1s1aLpqkq21TWKQDmSsnP0c3ku7Gt2UXf2fhpgvVmOV-ZcQdUCsWkPNDMXk9svutj79JgtmEf-xzP5BwUlGRCZYpOVB1DStE1v7YUzFivmerNzsqM9Zoia9ikSZnt3138c_5f9A01EHvN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2191087258</pqid></control><display><type>article</type><title>A robust set approach for mobile robot localization in ambient environment</title><source>SpringerNature Journals</source><creator>Colle, Etienne ; Galerne, Simon</creator><creatorcontrib>Colle, Etienne ; Galerne, Simon</creatorcontrib><description>Mobile robot localization consists in estimating the robot coordinates using real-time measurements. In ambient environment context, data can come both from the robot on-board sensors and from environment objects, mobile or not, able to sense the robot. The paper considers localization problem as a nonlinear bounded-error estimation of the state vector. The components of the state vector are the robot coordinates as well as the 2D position and orientation. The approach based on interval analysis can satisfy the needs of ambient environment by easily taking account a heterogeneous set and a variable number of measurements. Bounded-error state estimation can be an alternative to particle filtering which is sensitive to non-consistent measures, large measure errors, and drift of evolution model. The paper addresses the theoretical formulation of the set-membership approach and the application to the estimation of the robot localization. Additional treatments are added to the estimator in order to meet more realistic conditions. Treatments aim at reducing the effects of disruptive events: outliers, model inaccuracies or model drift and robot kidnapping. Simulation results show the contribution of each step of the estimator.</description><identifier>ISSN: 0929-5593</identifier><identifier>EISSN: 1573-7527</identifier><identifier>DOI: 10.1007/s10514-018-9727-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Automatic ; Computer Imaging ; Computer simulation ; Control ; Drift ; Engineering ; Engineering Sciences ; Error analysis ; Kidnapping ; Localization ; Mechatronics ; Object recognition ; Outliers (statistics) ; Pattern Recognition and Graphics ; Robotics ; Robotics and Automation ; Robots ; State estimation ; State vectors ; Vision</subject><ispartof>Autonomous robots, 2019-03, Vol.43 (3), p.557-573</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-2198f33c09ce9442044689865b36f97cd092110135deaa95ffbbafbae8002e673</citedby><cites>FETCH-LOGICAL-c393t-2198f33c09ce9442044689865b36f97cd092110135deaa95ffbbafbae8002e673</cites><orcidid>0000-0001-6716-6652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10514-018-9727-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10514-018-9727-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,782,786,887,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01758277$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Colle, Etienne</creatorcontrib><creatorcontrib>Galerne, Simon</creatorcontrib><title>A robust set approach for mobile robot localization in ambient environment</title><title>Autonomous robots</title><addtitle>Auton Robot</addtitle><description>Mobile robot localization consists in estimating the robot coordinates using real-time measurements. In ambient environment context, data can come both from the robot on-board sensors and from environment objects, mobile or not, able to sense the robot. The paper considers localization problem as a nonlinear bounded-error estimation of the state vector. The components of the state vector are the robot coordinates as well as the 2D position and orientation. The approach based on interval analysis can satisfy the needs of ambient environment by easily taking account a heterogeneous set and a variable number of measurements. Bounded-error state estimation can be an alternative to particle filtering which is sensitive to non-consistent measures, large measure errors, and drift of evolution model. The paper addresses the theoretical formulation of the set-membership approach and the application to the estimation of the robot localization. Additional treatments are added to the estimator in order to meet more realistic conditions. Treatments aim at reducing the effects of disruptive events: outliers, model inaccuracies or model drift and robot kidnapping. Simulation results show the contribution of each step of the estimator.</description><subject>Artificial Intelligence</subject><subject>Automatic</subject><subject>Computer Imaging</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Drift</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Error analysis</subject><subject>Kidnapping</subject><subject>Localization</subject><subject>Mechatronics</subject><subject>Object recognition</subject><subject>Outliers (statistics)</subject><subject>Pattern Recognition and Graphics</subject><subject>Robotics</subject><subject>Robotics and Automation</subject><subject>Robots</subject><subject>State estimation</subject><subject>State vectors</subject><subject>Vision</subject><issn>0929-5593</issn><issn>1573-7527</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OxCAUhYnRxPHnAdyRuHKBXqAUWE4m6mgmcaNrQjvUYdKWETqT6NNLU6MrV5dcvnNy7kHoisItBZB3iYKgBQGqiJZMkuIIzaiQnEjB5DGagWaaCKH5KTpLaQsAWgLM0PMcx1Dt04CTG7Dd7WKw9QY3IeIuVL5143cYcBtq2_ovO_jQY99j21Xe9QN2_cHH0Hf5fYFOGtsmd_kzz9Hbw_3rYklWL49Pi_mK1FzzgTCqVcN5Dbp2uigYFEWptCpFxctGy3qdo1IKlIu1s1aLpqkq21TWKQDmSsnP0c3ku7Gt2UXf2fhpgvVmOV-ZcQdUCsWkPNDMXk9svutj79JgtmEf-xzP5BwUlGRCZYpOVB1DStE1v7YUzFivmerNzsqM9Zoia9ikSZnt3138c_5f9A01EHvN</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Colle, Etienne</creator><creator>Galerne, Simon</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6716-6652</orcidid></search><sort><creationdate>20190301</creationdate><title>A robust set approach for mobile robot localization in ambient environment</title><author>Colle, Etienne ; Galerne, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-2198f33c09ce9442044689865b36f97cd092110135deaa95ffbbafbae8002e673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Automatic</topic><topic>Computer Imaging</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Drift</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Error analysis</topic><topic>Kidnapping</topic><topic>Localization</topic><topic>Mechatronics</topic><topic>Object recognition</topic><topic>Outliers (statistics)</topic><topic>Pattern Recognition and Graphics</topic><topic>Robotics</topic><topic>Robotics and Automation</topic><topic>Robots</topic><topic>State estimation</topic><topic>State vectors</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colle, Etienne</creatorcontrib><creatorcontrib>Galerne, Simon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Autonomous robots</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colle, Etienne</au><au>Galerne, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust set approach for mobile robot localization in ambient environment</atitle><jtitle>Autonomous robots</jtitle><stitle>Auton Robot</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>43</volume><issue>3</issue><spage>557</spage><epage>573</epage><pages>557-573</pages><issn>0929-5593</issn><eissn>1573-7527</eissn><abstract>Mobile robot localization consists in estimating the robot coordinates using real-time measurements. In ambient environment context, data can come both from the robot on-board sensors and from environment objects, mobile or not, able to sense the robot. The paper considers localization problem as a nonlinear bounded-error estimation of the state vector. The components of the state vector are the robot coordinates as well as the 2D position and orientation. The approach based on interval analysis can satisfy the needs of ambient environment by easily taking account a heterogeneous set and a variable number of measurements. Bounded-error state estimation can be an alternative to particle filtering which is sensitive to non-consistent measures, large measure errors, and drift of evolution model. The paper addresses the theoretical formulation of the set-membership approach and the application to the estimation of the robot localization. Additional treatments are added to the estimator in order to meet more realistic conditions. Treatments aim at reducing the effects of disruptive events: outliers, model inaccuracies or model drift and robot kidnapping. Simulation results show the contribution of each step of the estimator.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10514-018-9727-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6716-6652</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-5593 |
ispartof | Autonomous robots, 2019-03, Vol.43 (3), p.557-573 |
issn | 0929-5593 1573-7527 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01758277v1 |
source | SpringerNature Journals |
subjects | Artificial Intelligence Automatic Computer Imaging Computer simulation Control Drift Engineering Engineering Sciences Error analysis Kidnapping Localization Mechatronics Object recognition Outliers (statistics) Pattern Recognition and Graphics Robotics Robotics and Automation Robots State estimation State vectors Vision |
title | A robust set approach for mobile robot localization in ambient environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T13%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20set%20approach%20for%20mobile%20robot%20localization%20in%20ambient%20environment&rft.jtitle=Autonomous%20robots&rft.au=Colle,%20Etienne&rft.date=2019-03-01&rft.volume=43&rft.issue=3&rft.spage=557&rft.epage=573&rft.pages=557-573&rft.issn=0929-5593&rft.eissn=1573-7527&rft_id=info:doi/10.1007/s10514-018-9727-4&rft_dat=%3Cproquest_hal_p%3E2191087258%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2191087258&rft_id=info:pmid/&rfr_iscdi=true |