Fractional Poisson process: long-range dependence and applications in ruin theory - Correction

We study a renewal risk model in which the surplus process of the insurance company is modeled by a compound fractional Poisson process. We establish the long-range dependence property of this non-stationary process. Some results for the ruin probabilities are presented in various assumptions on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2016-12, Vol.53 (4), p.1271-1272
Hauptverfasser: Biard, R., Saussereau, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1272
container_issue 4
container_start_page 1271
container_title Journal of applied probability
container_volume 53
creator Biard, R.
Saussereau, B.
description We study a renewal risk model in which the surplus process of the insurance company is modeled by a compound fractional Poisson process. We establish the long-range dependence property of this non-stationary process. Some results for the ruin probabilities are presented in various assumptions on the distribution of the claim sizes.
doi_str_mv 10.1017/jpr.2016.80
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01753351v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01753351v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1121-9421d4e6becc73b573237b134a4db9e8a0c3aedf94e686cc3c345ab33bfbe6e43</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsnv0CuIlszm-w_b6VYKxT0oFfDJDvbblmTJalCv313rXh5D4b3HsOPsVsQMxBQPOz6MEsF5LNSnLEJqCJLclGk52wiRApJNeglu4pxJwSorCom7HMZ0O5b77Djb76N0TveB28pxkfeebdJAroN8Zp6cjU5SxxdzbHvu9biWIy8dTx8D7Lfkg8HnvCFD4F-V6_ZRYNdpJs_n7KP5dP7YpWsX59fFvN1YgHGx1QKtaLckLWFNFkhU1kYkApVbSoqUViJVDfVkClza6WVKkMjpWkM5aTklN2ddrfY6T60XxgO2mOrV_O1Hm8DnUzKDH5gyN6fsjb4GAM1_wUQesSoB4x6xKhLIY--BWah</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fractional Poisson process: long-range dependence and applications in ruin theory - Correction</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Biard, R. ; Saussereau, B.</creator><creatorcontrib>Biard, R. ; Saussereau, B.</creatorcontrib><description>We study a renewal risk model in which the surplus process of the insurance company is modeled by a compound fractional Poisson process. We establish the long-range dependence property of this non-stationary process. Some results for the ruin probabilities are presented in various assumptions on the distribution of the claim sizes.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/jpr.2016.80</identifier><language>eng</language><publisher>Cambridge University press</publisher><subject>Mathematics ; Probability</subject><ispartof>Journal of applied probability, 2016-12, Vol.53 (4), p.1271-1272</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1121-9421d4e6becc73b573237b134a4db9e8a0c3aedf94e686cc3c345ab33bfbe6e43</citedby><orcidid>0000-0001-9560-4074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01753351$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Biard, R.</creatorcontrib><creatorcontrib>Saussereau, B.</creatorcontrib><title>Fractional Poisson process: long-range dependence and applications in ruin theory - Correction</title><title>Journal of applied probability</title><description>We study a renewal risk model in which the surplus process of the insurance company is modeled by a compound fractional Poisson process. We establish the long-range dependence property of this non-stationary process. Some results for the ruin probabilities are presented in various assumptions on the distribution of the claim sizes.</description><subject>Mathematics</subject><subject>Probability</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKsnv0CuIlszm-w_b6VYKxT0oFfDJDvbblmTJalCv313rXh5D4b3HsOPsVsQMxBQPOz6MEsF5LNSnLEJqCJLclGk52wiRApJNeglu4pxJwSorCom7HMZ0O5b77Djb76N0TveB28pxkfeebdJAroN8Zp6cjU5SxxdzbHvu9biWIy8dTx8D7Lfkg8HnvCFD4F-V6_ZRYNdpJs_n7KP5dP7YpWsX59fFvN1YgHGx1QKtaLckLWFNFkhU1kYkApVbSoqUViJVDfVkClza6WVKkMjpWkM5aTklN2ddrfY6T60XxgO2mOrV_O1Hm8DnUzKDH5gyN6fsjb4GAM1_wUQesSoB4x6xKhLIY--BWah</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Biard, R.</creator><creator>Saussereau, B.</creator><general>Cambridge University press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9560-4074</orcidid></search><sort><creationdate>201612</creationdate><title>Fractional Poisson process: long-range dependence and applications in ruin theory - Correction</title><author>Biard, R. ; Saussereau, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1121-9421d4e6becc73b573237b134a4db9e8a0c3aedf94e686cc3c345ab33bfbe6e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biard, R.</creatorcontrib><creatorcontrib>Saussereau, B.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biard, R.</au><au>Saussereau, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional Poisson process: long-range dependence and applications in ruin theory - Correction</atitle><jtitle>Journal of applied probability</jtitle><date>2016-12</date><risdate>2016</risdate><volume>53</volume><issue>4</issue><spage>1271</spage><epage>1272</epage><pages>1271-1272</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>We study a renewal risk model in which the surplus process of the insurance company is modeled by a compound fractional Poisson process. We establish the long-range dependence property of this non-stationary process. Some results for the ruin probabilities are presented in various assumptions on the distribution of the claim sizes.</abstract><pub>Cambridge University press</pub><doi>10.1017/jpr.2016.80</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0001-9560-4074</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2016-12, Vol.53 (4), p.1271-1272
issn 0021-9002
1475-6072
language eng
recordid cdi_hal_primary_oai_HAL_hal_01753351v1
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete
subjects Mathematics
Probability
title Fractional Poisson process: long-range dependence and applications in ruin theory - Correction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A13%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20Poisson%20process:%20long-range%20dependence%20and%20applications%20in%20ruin%20theory%20-%20Correction&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Biard,%20R.&rft.date=2016-12&rft.volume=53&rft.issue=4&rft.spage=1271&rft.epage=1272&rft.pages=1271-1272&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/jpr.2016.80&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01753351v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true