Design and Simulation of a 128 kb Embedded Nonvolatile Memory Based on a Hybrid RRAM (HfO2 )/28 nm FDSOI CMOS Technology

Emerging nonvolatile memories (NVM) based on resistive switching mechanism such as RRAM are under intense R&D investigation by both academics and industries. They provide high write/read speed, low power, and good endurance (e.g., >10 12 ) beyond mainstream NVMs, enabling them to be a good ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2017-07, Vol.16 (4), p.677-686
Hauptverfasser: Portal, Jean-Michel, Bocquet, Marc, Onkaraiah, Santhosh, Moreau, Mathieu, Aziza, Hassen, Deleruyelle, Damien, Torki, Kholdoun, Vianello, Elisa, Levisse, Alexandre, Giraud, Bastien, Thomas, Olivier, Clermidy, Fabien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 686
container_issue 4
container_start_page 677
container_title IEEE transactions on nanotechnology
container_volume 16
creator Portal, Jean-Michel
Bocquet, Marc
Onkaraiah, Santhosh
Moreau, Mathieu
Aziza, Hassen
Deleruyelle, Damien
Torki, Kholdoun
Vianello, Elisa
Levisse, Alexandre
Giraud, Bastien
Thomas, Olivier
Clermidy, Fabien
description Emerging nonvolatile memories (NVM) based on resistive switching mechanism such as RRAM are under intense R&D investigation by both academics and industries. They provide high write/read speed, low power, and good endurance (e.g., >10 12 ) beyond mainstream NVMs, enabling them to be a good candidate for Flash replacement in microcontroller unit. This replacement could significantly decrease the power consumption and the integration cost on advanced CMOS nodes. This paper presents first the HfO 2 -based RRAM technology and the associated compact model, which includes related physics and model card fitting experimental electrical characterizations. The 128 kb memory architecture based on RRAM technology and 28 nm fully depleted silicon on insulator (FDSOI) CMOS core process is presented with a bottom-up approach, starting from the bit-cell definition up to the complete memory architecture implementation. The key points of the architecture are the use of standard logic MOS exclusively, avoiding any high voltage MOS usage, program/verify procedure to mitigate cycle to cycle variability issue and direct bit-cell read access for characterization purpose. The proposed architecture is validated using postlayout simulations on MOS and RRAM corner cases.
doi_str_mv 10.1109/TNANO.2017.2703985
format Article
fullrecord <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01745418v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7927735</ieee_id><sourcerecordid>oai_HAL_hal_01745418v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-83580f212662b2a536cb90202a362e3733c45adc25126ea621dfcb7ea885ef8d3</originalsourceid><addsrcrecordid>eNo9kF1PwjAUQBujiYj-AX25j_Iw6Me6dY_IhzMBlgAmvjXd1sF0W82GxP17OyE8tWnPuck9CD0SPCQEB6PtaryKhhQTf0h9zALBr1CPBC5xMBb82t458xxC-cctumuaT2xJj4se-p3qJt9VoKoUNnn5U6hDbiowGSggVMBXDLMy1mmqU1iZ6mg6oNCw1KWpW3hRjf2wgoKwjes8hfV6vITnMIsoDEZ2QFXCfLqJ3mCyjDaw1cm-MoXZtffoJlNFox_OZx-9z2fbSegsote3yXjhJMzlB0cwLnBGCfU8GlNlt0jiAFNMFfOoZj5jictVmlBuEa08StIsiX2thOA6Eynro8Fp7l4V8rvOS1W30qhchuOF7N5sCZe7RByJZemJTWrTNLXOLgLBsuss_zvLrrM8d7bS00nKtdYXwQ-o7zPO_gDfd3VK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and Simulation of a 128 kb Embedded Nonvolatile Memory Based on a Hybrid RRAM (HfO2 )/28 nm FDSOI CMOS Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Portal, Jean-Michel ; Bocquet, Marc ; Onkaraiah, Santhosh ; Moreau, Mathieu ; Aziza, Hassen ; Deleruyelle, Damien ; Torki, Kholdoun ; Vianello, Elisa ; Levisse, Alexandre ; Giraud, Bastien ; Thomas, Olivier ; Clermidy, Fabien</creator><creatorcontrib>Portal, Jean-Michel ; Bocquet, Marc ; Onkaraiah, Santhosh ; Moreau, Mathieu ; Aziza, Hassen ; Deleruyelle, Damien ; Torki, Kholdoun ; Vianello, Elisa ; Levisse, Alexandre ; Giraud, Bastien ; Thomas, Olivier ; Clermidy, Fabien</creatorcontrib><description>Emerging nonvolatile memories (NVM) based on resistive switching mechanism such as RRAM are under intense R&amp;D investigation by both academics and industries. They provide high write/read speed, low power, and good endurance (e.g., &gt;10 12 ) beyond mainstream NVMs, enabling them to be a good candidate for Flash replacement in microcontroller unit. This replacement could significantly decrease the power consumption and the integration cost on advanced CMOS nodes. This paper presents first the HfO 2 -based RRAM technology and the associated compact model, which includes related physics and model card fitting experimental electrical characterizations. The 128 kb memory architecture based on RRAM technology and 28 nm fully depleted silicon on insulator (FDSOI) CMOS core process is presented with a bottom-up approach, starting from the bit-cell definition up to the complete memory architecture implementation. The key points of the architecture are the use of standard logic MOS exclusively, avoiding any high voltage MOS usage, program/verify procedure to mitigate cycle to cycle variability issue and direct bit-cell read access for characterization purpose. The proposed architecture is validated using postlayout simulations on MOS and RRAM corner cases.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2017.2703985</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>IEEE</publisher><subject>CMOS technology ; Embedded non-volatile memory ; Engineering Sciences ; Hafnium compounds ; memory architecture ; Micro and nanotechnologies ; Microelectronics ; MOSFET ; Nonvolatile memory ; Random access memory ; resistive switching memory ; RRAM ; Semiconductor device modeling ; Switches</subject><ispartof>IEEE transactions on nanotechnology, 2017-07, Vol.16 (4), p.677-686</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-83580f212662b2a536cb90202a362e3733c45adc25126ea621dfcb7ea885ef8d3</citedby><cites>FETCH-LOGICAL-c345t-83580f212662b2a536cb90202a362e3733c45adc25126ea621dfcb7ea885ef8d3</cites><orcidid>0000-0003-2394-1359 ; 0000-0002-8868-9951 ; 0000-0003-0536-5722 ; 0000-0002-5708-1409 ; 0000-0002-8278-7462 ; 0000-0002-6722-053X ; 0000-0002-2332-4273 ; 0000-0003-3777-5793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7927735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7927735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01745418$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Portal, Jean-Michel</creatorcontrib><creatorcontrib>Bocquet, Marc</creatorcontrib><creatorcontrib>Onkaraiah, Santhosh</creatorcontrib><creatorcontrib>Moreau, Mathieu</creatorcontrib><creatorcontrib>Aziza, Hassen</creatorcontrib><creatorcontrib>Deleruyelle, Damien</creatorcontrib><creatorcontrib>Torki, Kholdoun</creatorcontrib><creatorcontrib>Vianello, Elisa</creatorcontrib><creatorcontrib>Levisse, Alexandre</creatorcontrib><creatorcontrib>Giraud, Bastien</creatorcontrib><creatorcontrib>Thomas, Olivier</creatorcontrib><creatorcontrib>Clermidy, Fabien</creatorcontrib><title>Design and Simulation of a 128 kb Embedded Nonvolatile Memory Based on a Hybrid RRAM (HfO2 )/28 nm FDSOI CMOS Technology</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Emerging nonvolatile memories (NVM) based on resistive switching mechanism such as RRAM are under intense R&amp;D investigation by both academics and industries. They provide high write/read speed, low power, and good endurance (e.g., &gt;10 12 ) beyond mainstream NVMs, enabling them to be a good candidate for Flash replacement in microcontroller unit. This replacement could significantly decrease the power consumption and the integration cost on advanced CMOS nodes. This paper presents first the HfO 2 -based RRAM technology and the associated compact model, which includes related physics and model card fitting experimental electrical characterizations. The 128 kb memory architecture based on RRAM technology and 28 nm fully depleted silicon on insulator (FDSOI) CMOS core process is presented with a bottom-up approach, starting from the bit-cell definition up to the complete memory architecture implementation. The key points of the architecture are the use of standard logic MOS exclusively, avoiding any high voltage MOS usage, program/verify procedure to mitigate cycle to cycle variability issue and direct bit-cell read access for characterization purpose. The proposed architecture is validated using postlayout simulations on MOS and RRAM corner cases.</description><subject>CMOS technology</subject><subject>Embedded non-volatile memory</subject><subject>Engineering Sciences</subject><subject>Hafnium compounds</subject><subject>memory architecture</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>MOSFET</subject><subject>Nonvolatile memory</subject><subject>Random access memory</subject><subject>resistive switching memory</subject><subject>RRAM</subject><subject>Semiconductor device modeling</subject><subject>Switches</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1PwjAUQBujiYj-AX25j_Iw6Me6dY_IhzMBlgAmvjXd1sF0W82GxP17OyE8tWnPuck9CD0SPCQEB6PtaryKhhQTf0h9zALBr1CPBC5xMBb82t458xxC-cctumuaT2xJj4se-p3qJt9VoKoUNnn5U6hDbiowGSggVMBXDLMy1mmqU1iZ6mg6oNCw1KWpW3hRjf2wgoKwjes8hfV6vITnMIsoDEZ2QFXCfLqJ3mCyjDaw1cm-MoXZtffoJlNFox_OZx-9z2fbSegsote3yXjhJMzlB0cwLnBGCfU8GlNlt0jiAFNMFfOoZj5jictVmlBuEa08StIsiX2thOA6Eynro8Fp7l4V8rvOS1W30qhchuOF7N5sCZe7RByJZemJTWrTNLXOLgLBsuss_zvLrrM8d7bS00nKtdYXwQ-o7zPO_gDfd3VK</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Portal, Jean-Michel</creator><creator>Bocquet, Marc</creator><creator>Onkaraiah, Santhosh</creator><creator>Moreau, Mathieu</creator><creator>Aziza, Hassen</creator><creator>Deleruyelle, Damien</creator><creator>Torki, Kholdoun</creator><creator>Vianello, Elisa</creator><creator>Levisse, Alexandre</creator><creator>Giraud, Bastien</creator><creator>Thomas, Olivier</creator><creator>Clermidy, Fabien</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2394-1359</orcidid><orcidid>https://orcid.org/0000-0002-8868-9951</orcidid><orcidid>https://orcid.org/0000-0003-0536-5722</orcidid><orcidid>https://orcid.org/0000-0002-5708-1409</orcidid><orcidid>https://orcid.org/0000-0002-8278-7462</orcidid><orcidid>https://orcid.org/0000-0002-6722-053X</orcidid><orcidid>https://orcid.org/0000-0002-2332-4273</orcidid><orcidid>https://orcid.org/0000-0003-3777-5793</orcidid></search><sort><creationdate>201707</creationdate><title>Design and Simulation of a 128 kb Embedded Nonvolatile Memory Based on a Hybrid RRAM (HfO2 )/28 nm FDSOI CMOS Technology</title><author>Portal, Jean-Michel ; Bocquet, Marc ; Onkaraiah, Santhosh ; Moreau, Mathieu ; Aziza, Hassen ; Deleruyelle, Damien ; Torki, Kholdoun ; Vianello, Elisa ; Levisse, Alexandre ; Giraud, Bastien ; Thomas, Olivier ; Clermidy, Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-83580f212662b2a536cb90202a362e3733c45adc25126ea621dfcb7ea885ef8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CMOS technology</topic><topic>Embedded non-volatile memory</topic><topic>Engineering Sciences</topic><topic>Hafnium compounds</topic><topic>memory architecture</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>MOSFET</topic><topic>Nonvolatile memory</topic><topic>Random access memory</topic><topic>resistive switching memory</topic><topic>RRAM</topic><topic>Semiconductor device modeling</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Portal, Jean-Michel</creatorcontrib><creatorcontrib>Bocquet, Marc</creatorcontrib><creatorcontrib>Onkaraiah, Santhosh</creatorcontrib><creatorcontrib>Moreau, Mathieu</creatorcontrib><creatorcontrib>Aziza, Hassen</creatorcontrib><creatorcontrib>Deleruyelle, Damien</creatorcontrib><creatorcontrib>Torki, Kholdoun</creatorcontrib><creatorcontrib>Vianello, Elisa</creatorcontrib><creatorcontrib>Levisse, Alexandre</creatorcontrib><creatorcontrib>Giraud, Bastien</creatorcontrib><creatorcontrib>Thomas, Olivier</creatorcontrib><creatorcontrib>Clermidy, Fabien</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Portal, Jean-Michel</au><au>Bocquet, Marc</au><au>Onkaraiah, Santhosh</au><au>Moreau, Mathieu</au><au>Aziza, Hassen</au><au>Deleruyelle, Damien</au><au>Torki, Kholdoun</au><au>Vianello, Elisa</au><au>Levisse, Alexandre</au><au>Giraud, Bastien</au><au>Thomas, Olivier</au><au>Clermidy, Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Simulation of a 128 kb Embedded Nonvolatile Memory Based on a Hybrid RRAM (HfO2 )/28 nm FDSOI CMOS Technology</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2017-07</date><risdate>2017</risdate><volume>16</volume><issue>4</issue><spage>677</spage><epage>686</epage><pages>677-686</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Emerging nonvolatile memories (NVM) based on resistive switching mechanism such as RRAM are under intense R&amp;D investigation by both academics and industries. They provide high write/read speed, low power, and good endurance (e.g., &gt;10 12 ) beyond mainstream NVMs, enabling them to be a good candidate for Flash replacement in microcontroller unit. This replacement could significantly decrease the power consumption and the integration cost on advanced CMOS nodes. This paper presents first the HfO 2 -based RRAM technology and the associated compact model, which includes related physics and model card fitting experimental electrical characterizations. The 128 kb memory architecture based on RRAM technology and 28 nm fully depleted silicon on insulator (FDSOI) CMOS core process is presented with a bottom-up approach, starting from the bit-cell definition up to the complete memory architecture implementation. The key points of the architecture are the use of standard logic MOS exclusively, avoiding any high voltage MOS usage, program/verify procedure to mitigate cycle to cycle variability issue and direct bit-cell read access for characterization purpose. The proposed architecture is validated using postlayout simulations on MOS and RRAM corner cases.</abstract><pub>IEEE</pub><doi>10.1109/TNANO.2017.2703985</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2394-1359</orcidid><orcidid>https://orcid.org/0000-0002-8868-9951</orcidid><orcidid>https://orcid.org/0000-0003-0536-5722</orcidid><orcidid>https://orcid.org/0000-0002-5708-1409</orcidid><orcidid>https://orcid.org/0000-0002-8278-7462</orcidid><orcidid>https://orcid.org/0000-0002-6722-053X</orcidid><orcidid>https://orcid.org/0000-0002-2332-4273</orcidid><orcidid>https://orcid.org/0000-0003-3777-5793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2017-07, Vol.16 (4), p.677-686
issn 1536-125X
1941-0085
language eng
recordid cdi_hal_primary_oai_HAL_hal_01745418v1
source IEEE Electronic Library (IEL)
subjects CMOS technology
Embedded non-volatile memory
Engineering Sciences
Hafnium compounds
memory architecture
Micro and nanotechnologies
Microelectronics
MOSFET
Nonvolatile memory
Random access memory
resistive switching memory
RRAM
Semiconductor device modeling
Switches
title Design and Simulation of a 128 kb Embedded Nonvolatile Memory Based on a Hybrid RRAM (HfO2 )/28 nm FDSOI CMOS Technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Simulation%20of%20a%20128%20kb%20Embedded%20Nonvolatile%20Memory%20Based%20on%20a%20Hybrid%20RRAM%20(HfO2%20)/28%20nm%20FDSOI%20CMOS%20Technology&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Portal,%20Jean-Michel&rft.date=2017-07&rft.volume=16&rft.issue=4&rft.spage=677&rft.epage=686&rft.pages=677-686&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2017.2703985&rft_dat=%3Chal_RIE%3Eoai_HAL_hal_01745418v1%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7927735&rfr_iscdi=true