Human Serum Albumin Self-Assembly on Weak Polyelectrolyte Multilayer Films Structurally Modified by pH Changes

Adsorption of proteins onto film surfaces built up layer by layer from oppositely charged polyelectrolytes is a complex phenomenon, governed by electrostatic forces, hydrogen bonds, and hydrophobic interactions. The amounts of the interacting charges, however, both in polyelectrolytes and in protein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2004-06, Vol.20 (13), p.5575-5582
Hauptverfasser: Gergely, Csilla, Bahi, Sophie, Szalontai, Balázs, Flores, Hector, Schaaf, Pierre, Voegel, Jean-Claude, Cuisinier, Frédéric J. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5582
container_issue 13
container_start_page 5575
container_title Langmuir
container_volume 20
creator Gergely, Csilla
Bahi, Sophie
Szalontai, Balázs
Flores, Hector
Schaaf, Pierre
Voegel, Jean-Claude
Cuisinier, Frédéric J. G
description Adsorption of proteins onto film surfaces built up layer by layer from oppositely charged polyelectrolytes is a complex phenomenon, governed by electrostatic forces, hydrogen bonds, and hydrophobic interactions. The amounts of the interacting charges, however, both in polyelectrolytes and in proteins adsorbed on such films are a function of the pH of the solution. In addition, the number and the accessibility of free charges in proteins depend on the secondary structure of the protein. The subtle interplay of all these factors determines the adsorption of the proteins onto the polyelectrolyte film surfaces. We investigated the effect of these parameters for polyelectrolyte films built up from weak “protein-like” polyelectrolytes (i.e., polypeptides), poly(l-lysine) (PLL), and poly(glutamic acid) (PGA) and for the adsorption of human serum albumin (HSA) onto these films in the pH range 3.0−10.5. It was found that the buildup of the polyelectrolyte films is not a simple function of the pure charges of the individual polyelectrolytes, as estimated from their respective pK a values. The adsorption of HSA onto (PLL/PGA) n films depended strongly on the polyelectrolyte terminating the film. For PLL-terminated polyelectrolyte films, at low pH, repulsion, as expected, is limiting the adsorption of HSA (having net positive charge below pH 4.6) since PLL is also positively charged here. At high pH values, an unexpected HSA uptake was found on the PGA-ending films, even when both PGA and HSA were negatively charged. It is suggested that the higher surface rugosity and the decrease of the α-helix content at basic pH values (making accessible certain charged groups of the protein for interactions with the polyelectrolyte film) could explain this behavior.
doi_str_mv 10.1021/la049932x
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01743281v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67307867</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-fb066c1faf9366d603cd6f798a47f1bc796cb7f1fa23adfe6f34f41d866a1ab43</originalsourceid><addsrcrecordid>eNptkc9v0zAUxy0EYt3gwD-AfAFphzA7TuzkWFWUglptUsd2tF4cm3lzks6O0fLf46pVd-H0fn3e90nfh9AnSr5RktMrB6Soa5a_vEEzWuYkK6tcvEUzIgqWiYKzM3QewiMhpGZF_R6d0bKuuCBshvpV7KDHW-1jh-euiZ3dV85k8xB017gJDz2-1_CEbwY3aafV6FMyaryJbrQOJu3x0rou4O3ooxqjB5e2NkNrjdUtbia8W-HFA_R_dPiA3hlwQX88xgv0e_n9drHK1tc_fi7m6wxYxcbMNIRzRQ2YmnHecsJUy42oKyiEoY0SNVdNygzkDFqjuWGFKWhbcQ4UmoJdoMuD7gM4ufO2Az_JAaxczddy3yM0eZNX9C9N7NcDu_PDc9RhlJ0NSjsHvR5ikFwwIpJdr6LKDyF4bU7KlMj9I-TpEYn9fBSNTafbV_LofAKyA2DDqF9Oc_BP-4OilLc3W8mX25Jtfgl5l_gvBx5UkI9D9H3y7z-H_wH9P59P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67307867</pqid></control><display><type>article</type><title>Human Serum Albumin Self-Assembly on Weak Polyelectrolyte Multilayer Films Structurally Modified by pH Changes</title><source>ACS Publications</source><source>MEDLINE</source><creator>Gergely, Csilla ; Bahi, Sophie ; Szalontai, Balázs ; Flores, Hector ; Schaaf, Pierre ; Voegel, Jean-Claude ; Cuisinier, Frédéric J. G</creator><creatorcontrib>Gergely, Csilla ; Bahi, Sophie ; Szalontai, Balázs ; Flores, Hector ; Schaaf, Pierre ; Voegel, Jean-Claude ; Cuisinier, Frédéric J. G</creatorcontrib><description>Adsorption of proteins onto film surfaces built up layer by layer from oppositely charged polyelectrolytes is a complex phenomenon, governed by electrostatic forces, hydrogen bonds, and hydrophobic interactions. The amounts of the interacting charges, however, both in polyelectrolytes and in proteins adsorbed on such films are a function of the pH of the solution. In addition, the number and the accessibility of free charges in proteins depend on the secondary structure of the protein. The subtle interplay of all these factors determines the adsorption of the proteins onto the polyelectrolyte film surfaces. We investigated the effect of these parameters for polyelectrolyte films built up from weak “protein-like” polyelectrolytes (i.e., polypeptides), poly(l-lysine) (PLL), and poly(glutamic acid) (PGA) and for the adsorption of human serum albumin (HSA) onto these films in the pH range 3.0−10.5. It was found that the buildup of the polyelectrolyte films is not a simple function of the pure charges of the individual polyelectrolytes, as estimated from their respective pK a values. The adsorption of HSA onto (PLL/PGA) n films depended strongly on the polyelectrolyte terminating the film. For PLL-terminated polyelectrolyte films, at low pH, repulsion, as expected, is limiting the adsorption of HSA (having net positive charge below pH 4.6) since PLL is also positively charged here. At high pH values, an unexpected HSA uptake was found on the PGA-ending films, even when both PGA and HSA were negatively charged. It is suggested that the higher surface rugosity and the decrease of the α-helix content at basic pH values (making accessible certain charged groups of the protein for interactions with the polyelectrolyte film) could explain this behavior.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la049932x</identifier><identifier>PMID: 15986703</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Absorption ; Biochemistry, Molecular Biology ; Biophysics ; Electrolytes - chemistry ; Humans ; Hydrogen-Ion Concentration ; Life Sciences ; Microscopy, Atomic Force ; Polyglutamic Acid - chemistry ; Polylysine - chemistry ; Serum Albumin - chemistry ; Serum Albumin - metabolism ; Spectroscopy, Fourier Transform Infrared</subject><ispartof>Langmuir, 2004-06, Vol.20 (13), p.5575-5582</ispartof><rights>Copyright © 2004 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-fb066c1faf9366d603cd6f798a47f1bc796cb7f1fa23adfe6f34f41d866a1ab43</citedby><cites>FETCH-LOGICAL-a383t-fb066c1faf9366d603cd6f798a47f1bc796cb7f1fa23adfe6f34f41d866a1ab43</cites><orcidid>0000-0001-7423-5492 ; 0000-0001-6870-0490 ; 0000-0003-1229-6761</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la049932x$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la049932x$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15986703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.umontpellier.fr/hal-01743281$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gergely, Csilla</creatorcontrib><creatorcontrib>Bahi, Sophie</creatorcontrib><creatorcontrib>Szalontai, Balázs</creatorcontrib><creatorcontrib>Flores, Hector</creatorcontrib><creatorcontrib>Schaaf, Pierre</creatorcontrib><creatorcontrib>Voegel, Jean-Claude</creatorcontrib><creatorcontrib>Cuisinier, Frédéric J. G</creatorcontrib><title>Human Serum Albumin Self-Assembly on Weak Polyelectrolyte Multilayer Films Structurally Modified by pH Changes</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Adsorption of proteins onto film surfaces built up layer by layer from oppositely charged polyelectrolytes is a complex phenomenon, governed by electrostatic forces, hydrogen bonds, and hydrophobic interactions. The amounts of the interacting charges, however, both in polyelectrolytes and in proteins adsorbed on such films are a function of the pH of the solution. In addition, the number and the accessibility of free charges in proteins depend on the secondary structure of the protein. The subtle interplay of all these factors determines the adsorption of the proteins onto the polyelectrolyte film surfaces. We investigated the effect of these parameters for polyelectrolyte films built up from weak “protein-like” polyelectrolytes (i.e., polypeptides), poly(l-lysine) (PLL), and poly(glutamic acid) (PGA) and for the adsorption of human serum albumin (HSA) onto these films in the pH range 3.0−10.5. It was found that the buildup of the polyelectrolyte films is not a simple function of the pure charges of the individual polyelectrolytes, as estimated from their respective pK a values. The adsorption of HSA onto (PLL/PGA) n films depended strongly on the polyelectrolyte terminating the film. For PLL-terminated polyelectrolyte films, at low pH, repulsion, as expected, is limiting the adsorption of HSA (having net positive charge below pH 4.6) since PLL is also positively charged here. At high pH values, an unexpected HSA uptake was found on the PGA-ending films, even when both PGA and HSA were negatively charged. It is suggested that the higher surface rugosity and the decrease of the α-helix content at basic pH values (making accessible certain charged groups of the protein for interactions with the polyelectrolyte film) could explain this behavior.</description><subject>Absorption</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biophysics</subject><subject>Electrolytes - chemistry</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Life Sciences</subject><subject>Microscopy, Atomic Force</subject><subject>Polyglutamic Acid - chemistry</subject><subject>Polylysine - chemistry</subject><subject>Serum Albumin - chemistry</subject><subject>Serum Albumin - metabolism</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc9v0zAUxy0EYt3gwD-AfAFphzA7TuzkWFWUglptUsd2tF4cm3lzks6O0fLf46pVd-H0fn3e90nfh9AnSr5RktMrB6Soa5a_vEEzWuYkK6tcvEUzIgqWiYKzM3QewiMhpGZF_R6d0bKuuCBshvpV7KDHW-1jh-euiZ3dV85k8xB017gJDz2-1_CEbwY3aafV6FMyaryJbrQOJu3x0rou4O3ooxqjB5e2NkNrjdUtbia8W-HFA_R_dPiA3hlwQX88xgv0e_n9drHK1tc_fi7m6wxYxcbMNIRzRQ2YmnHecsJUy42oKyiEoY0SNVdNygzkDFqjuWGFKWhbcQ4UmoJdoMuD7gM4ufO2Az_JAaxczddy3yM0eZNX9C9N7NcDu_PDc9RhlJ0NSjsHvR5ikFwwIpJdr6LKDyF4bU7KlMj9I-TpEYn9fBSNTafbV_LofAKyA2DDqF9Oc_BP-4OilLc3W8mX25Jtfgl5l_gvBx5UkI9D9H3y7z-H_wH9P59P</recordid><startdate>20040622</startdate><enddate>20040622</enddate><creator>Gergely, Csilla</creator><creator>Bahi, Sophie</creator><creator>Szalontai, Balázs</creator><creator>Flores, Hector</creator><creator>Schaaf, Pierre</creator><creator>Voegel, Jean-Claude</creator><creator>Cuisinier, Frédéric J. G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7423-5492</orcidid><orcidid>https://orcid.org/0000-0001-6870-0490</orcidid><orcidid>https://orcid.org/0000-0003-1229-6761</orcidid></search><sort><creationdate>20040622</creationdate><title>Human Serum Albumin Self-Assembly on Weak Polyelectrolyte Multilayer Films Structurally Modified by pH Changes</title><author>Gergely, Csilla ; Bahi, Sophie ; Szalontai, Balázs ; Flores, Hector ; Schaaf, Pierre ; Voegel, Jean-Claude ; Cuisinier, Frédéric J. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-fb066c1faf9366d603cd6f798a47f1bc796cb7f1fa23adfe6f34f41d866a1ab43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Absorption</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biophysics</topic><topic>Electrolytes - chemistry</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Life Sciences</topic><topic>Microscopy, Atomic Force</topic><topic>Polyglutamic Acid - chemistry</topic><topic>Polylysine - chemistry</topic><topic>Serum Albumin - chemistry</topic><topic>Serum Albumin - metabolism</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gergely, Csilla</creatorcontrib><creatorcontrib>Bahi, Sophie</creatorcontrib><creatorcontrib>Szalontai, Balázs</creatorcontrib><creatorcontrib>Flores, Hector</creatorcontrib><creatorcontrib>Schaaf, Pierre</creatorcontrib><creatorcontrib>Voegel, Jean-Claude</creatorcontrib><creatorcontrib>Cuisinier, Frédéric J. G</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gergely, Csilla</au><au>Bahi, Sophie</au><au>Szalontai, Balázs</au><au>Flores, Hector</au><au>Schaaf, Pierre</au><au>Voegel, Jean-Claude</au><au>Cuisinier, Frédéric J. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human Serum Albumin Self-Assembly on Weak Polyelectrolyte Multilayer Films Structurally Modified by pH Changes</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2004-06-22</date><risdate>2004</risdate><volume>20</volume><issue>13</issue><spage>5575</spage><epage>5582</epage><pages>5575-5582</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Adsorption of proteins onto film surfaces built up layer by layer from oppositely charged polyelectrolytes is a complex phenomenon, governed by electrostatic forces, hydrogen bonds, and hydrophobic interactions. The amounts of the interacting charges, however, both in polyelectrolytes and in proteins adsorbed on such films are a function of the pH of the solution. In addition, the number and the accessibility of free charges in proteins depend on the secondary structure of the protein. The subtle interplay of all these factors determines the adsorption of the proteins onto the polyelectrolyte film surfaces. We investigated the effect of these parameters for polyelectrolyte films built up from weak “protein-like” polyelectrolytes (i.e., polypeptides), poly(l-lysine) (PLL), and poly(glutamic acid) (PGA) and for the adsorption of human serum albumin (HSA) onto these films in the pH range 3.0−10.5. It was found that the buildup of the polyelectrolyte films is not a simple function of the pure charges of the individual polyelectrolytes, as estimated from their respective pK a values. The adsorption of HSA onto (PLL/PGA) n films depended strongly on the polyelectrolyte terminating the film. For PLL-terminated polyelectrolyte films, at low pH, repulsion, as expected, is limiting the adsorption of HSA (having net positive charge below pH 4.6) since PLL is also positively charged here. At high pH values, an unexpected HSA uptake was found on the PGA-ending films, even when both PGA and HSA were negatively charged. It is suggested that the higher surface rugosity and the decrease of the α-helix content at basic pH values (making accessible certain charged groups of the protein for interactions with the polyelectrolyte film) could explain this behavior.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>15986703</pmid><doi>10.1021/la049932x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7423-5492</orcidid><orcidid>https://orcid.org/0000-0001-6870-0490</orcidid><orcidid>https://orcid.org/0000-0003-1229-6761</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2004-06, Vol.20 (13), p.5575-5582
issn 0743-7463
1520-5827
language eng
recordid cdi_hal_primary_oai_HAL_hal_01743281v1
source ACS Publications; MEDLINE
subjects Absorption
Biochemistry, Molecular Biology
Biophysics
Electrolytes - chemistry
Humans
Hydrogen-Ion Concentration
Life Sciences
Microscopy, Atomic Force
Polyglutamic Acid - chemistry
Polylysine - chemistry
Serum Albumin - chemistry
Serum Albumin - metabolism
Spectroscopy, Fourier Transform Infrared
title Human Serum Albumin Self-Assembly on Weak Polyelectrolyte Multilayer Films Structurally Modified by pH Changes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20Serum%20Albumin%20Self-Assembly%20on%20Weak%20Polyelectrolyte%20Multilayer%20Films%20Structurally%20Modified%20by%20pH%20Changes&rft.jtitle=Langmuir&rft.au=Gergely,%20Csilla&rft.date=2004-06-22&rft.volume=20&rft.issue=13&rft.spage=5575&rft.epage=5582&rft.pages=5575-5582&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la049932x&rft_dat=%3Cproquest_hal_p%3E67307867%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67307867&rft_id=info:pmid/15986703&rfr_iscdi=true