A spark plasma sintering densification modeling approach: from polymer, metals to ceramics

The powder compaction modeling of advanced sintering techniques such as spark plasma sintering is a crucial step in the conception of complex shape objects and the understanding of the process. The complete identification of common powder compaction models requires lengthy experimental investigation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2018-05, Vol.53 (10), p.7869-7876
Hauptverfasser: Manière, Charles, Durand, Lise, Chevallier, Geoffroy, Estournès, Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7876
container_issue 10
container_start_page 7869
container_title Journal of materials science
container_volume 53
creator Manière, Charles
Durand, Lise
Chevallier, Geoffroy
Estournès, Claude
description The powder compaction modeling of advanced sintering techniques such as spark plasma sintering is a crucial step in the conception of complex shape objects and the understanding of the process. The complete identification of common powder compaction models requires lengthy experimental investigations based on creep and compaction tests. In order to circumvent this problem, a semi-theoretical approach can be employed whereby the mechanical behavior of the powder material is determined theoretically and the temperature-dependent equivalent creep behavior of the material is determined experimentally. Extending the use of this approach to polymers, metals and ceramics is discussed and compared to other independent methods.
doi_str_mv 10.1007/s10853-018-2096-8
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01737655v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A529093702</galeid><sourcerecordid>A529093702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-f4cdad3c83c0d1775676fcedd636594dc66db7276b73a774a1fedbd7c38471893</originalsourceid><addsrcrecordid>eNp1kUtr3DAUhUVpodM0PyA7QVeBOtHDeji7IbRJYCCQxyYbodFjotS2XEkTmn9fGYeELspdXDh853IuB4AjjE4wQuI0YyQZbRCWDUEdb-QHsMJM0KaViH4EK4QIaUjL8WfwJecnhBATBK_AwxrmSadfcOp1HjTMYSwuhXEHrRtz8MHoEuIIh2hdP8t6mlLU5vEM-hQHOMX-ZXDpOxxc0X2GJULjkh6CyV_BJ18ld_i6D8D9zx9355fN5vri6ny9aUzLeWl8a6y21EhqkMVCMC64N85aTjnrWms4t1tBBN8KqoVoNfbObq0wVLYCy44egOPl7qPu1ZTCoNOLijqoy_VGzRrCggrO2DOu7LeFrU_83rtc1FPcp7HGU4SwjmPCBavUyULtdO9UGH0sSZs61tXH4uh8qPqakQ51VCDyHuHVUJni_pSd3uesrm5v_mXxwpoUc07Ov2XGSM1dqqXLGluquUslq4csnjzN3bj0Hvv_pr8XJ5_v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259612675</pqid></control><display><type>article</type><title>A spark plasma sintering densification modeling approach: from polymer, metals to ceramics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Manière, Charles ; Durand, Lise ; Chevallier, Geoffroy ; Estournès, Claude</creator><creatorcontrib>Manière, Charles ; Durand, Lise ; Chevallier, Geoffroy ; Estournès, Claude</creatorcontrib><description>The powder compaction modeling of advanced sintering techniques such as spark plasma sintering is a crucial step in the conception of complex shape objects and the understanding of the process. The complete identification of common powder compaction models requires lengthy experimental investigations based on creep and compaction tests. In order to circumvent this problem, a semi-theoretical approach can be employed whereby the mechanical behavior of the powder material is determined theoretically and the temperature-dependent equivalent creep behavior of the material is determined experimentally. Extending the use of this approach to polymers, metals and ceramics is discussed and compared to other independent methods.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-018-2096-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ceramic powders ; Ceramics ; Characterization and Evaluation of Materials ; Chemical and Process Engineering ; Chemistry and Materials Science ; Classical Mechanics ; Comparative analysis ; Complex shape objects ; Creep (materials) ; Crystallography and Scattering Methods ; Densification ; Engineering Sciences ; Materials ; Materials Science ; Mechanical properties ; Metals ; Methods ; Modelling ; Plasma sintering ; Polymer industry ; Polymer Sciences ; Polymers ; Powders (Particulate matter) ; Sintering ; Solid Mechanics ; Spark plasma sintering ; Temperature dependence</subject><ispartof>Journal of materials science, 2018-05, Vol.53 (10), p.7869-7876</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-f4cdad3c83c0d1775676fcedd636594dc66db7276b73a774a1fedbd7c38471893</citedby><cites>FETCH-LOGICAL-c466t-f4cdad3c83c0d1775676fcedd636594dc66db7276b73a774a1fedbd7c38471893</cites><orcidid>0000-0003-0073-9772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-018-2096-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-018-2096-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01737655$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Manière, Charles</creatorcontrib><creatorcontrib>Durand, Lise</creatorcontrib><creatorcontrib>Chevallier, Geoffroy</creatorcontrib><creatorcontrib>Estournès, Claude</creatorcontrib><title>A spark plasma sintering densification modeling approach: from polymer, metals to ceramics</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The powder compaction modeling of advanced sintering techniques such as spark plasma sintering is a crucial step in the conception of complex shape objects and the understanding of the process. The complete identification of common powder compaction models requires lengthy experimental investigations based on creep and compaction tests. In order to circumvent this problem, a semi-theoretical approach can be employed whereby the mechanical behavior of the powder material is determined theoretically and the temperature-dependent equivalent creep behavior of the material is determined experimentally. Extending the use of this approach to polymers, metals and ceramics is discussed and compared to other independent methods.</description><subject>Ceramic powders</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical and Process Engineering</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Comparative analysis</subject><subject>Complex shape objects</subject><subject>Creep (materials)</subject><subject>Crystallography and Scattering Methods</subject><subject>Densification</subject><subject>Engineering Sciences</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Methods</subject><subject>Modelling</subject><subject>Plasma sintering</subject><subject>Polymer industry</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Powders (Particulate matter)</subject><subject>Sintering</subject><subject>Solid Mechanics</subject><subject>Spark plasma sintering</subject><subject>Temperature dependence</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kUtr3DAUhUVpodM0PyA7QVeBOtHDeji7IbRJYCCQxyYbodFjotS2XEkTmn9fGYeELspdXDh853IuB4AjjE4wQuI0YyQZbRCWDUEdb-QHsMJM0KaViH4EK4QIaUjL8WfwJecnhBATBK_AwxrmSadfcOp1HjTMYSwuhXEHrRtz8MHoEuIIh2hdP8t6mlLU5vEM-hQHOMX-ZXDpOxxc0X2GJULjkh6CyV_BJ18ld_i6D8D9zx9355fN5vri6ny9aUzLeWl8a6y21EhqkMVCMC64N85aTjnrWms4t1tBBN8KqoVoNfbObq0wVLYCy44egOPl7qPu1ZTCoNOLijqoy_VGzRrCggrO2DOu7LeFrU_83rtc1FPcp7HGU4SwjmPCBavUyULtdO9UGH0sSZs61tXH4uh8qPqakQ51VCDyHuHVUJni_pSd3uesrm5v_mXxwpoUc07Ov2XGSM1dqqXLGluquUslq4csnjzN3bj0Hvv_pr8XJ5_v</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Manière, Charles</creator><creator>Durand, Lise</creator><creator>Chevallier, Geoffroy</creator><creator>Estournès, Claude</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0073-9772</orcidid></search><sort><creationdate>20180501</creationdate><title>A spark plasma sintering densification modeling approach: from polymer, metals to ceramics</title><author>Manière, Charles ; Durand, Lise ; Chevallier, Geoffroy ; Estournès, Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-f4cdad3c83c0d1775676fcedd636594dc66db7276b73a774a1fedbd7c38471893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ceramic powders</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical and Process Engineering</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Comparative analysis</topic><topic>Complex shape objects</topic><topic>Creep (materials)</topic><topic>Crystallography and Scattering Methods</topic><topic>Densification</topic><topic>Engineering Sciences</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Methods</topic><topic>Modelling</topic><topic>Plasma sintering</topic><topic>Polymer industry</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Powders (Particulate matter)</topic><topic>Sintering</topic><topic>Solid Mechanics</topic><topic>Spark plasma sintering</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manière, Charles</creatorcontrib><creatorcontrib>Durand, Lise</creatorcontrib><creatorcontrib>Chevallier, Geoffroy</creatorcontrib><creatorcontrib>Estournès, Claude</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manière, Charles</au><au>Durand, Lise</au><au>Chevallier, Geoffroy</au><au>Estournès, Claude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spark plasma sintering densification modeling approach: from polymer, metals to ceramics</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>53</volume><issue>10</issue><spage>7869</spage><epage>7876</epage><pages>7869-7876</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The powder compaction modeling of advanced sintering techniques such as spark plasma sintering is a crucial step in the conception of complex shape objects and the understanding of the process. The complete identification of common powder compaction models requires lengthy experimental investigations based on creep and compaction tests. In order to circumvent this problem, a semi-theoretical approach can be employed whereby the mechanical behavior of the powder material is determined theoretically and the temperature-dependent equivalent creep behavior of the material is determined experimentally. Extending the use of this approach to polymers, metals and ceramics is discussed and compared to other independent methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-018-2096-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0073-9772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2018-05, Vol.53 (10), p.7869-7876
issn 0022-2461
1573-4803
language eng
recordid cdi_hal_primary_oai_HAL_hal_01737655v1
source SpringerLink Journals - AutoHoldings
subjects Ceramic powders
Ceramics
Characterization and Evaluation of Materials
Chemical and Process Engineering
Chemistry and Materials Science
Classical Mechanics
Comparative analysis
Complex shape objects
Creep (materials)
Crystallography and Scattering Methods
Densification
Engineering Sciences
Materials
Materials Science
Mechanical properties
Metals
Methods
Modelling
Plasma sintering
Polymer industry
Polymer Sciences
Polymers
Powders (Particulate matter)
Sintering
Solid Mechanics
Spark plasma sintering
Temperature dependence
title A spark plasma sintering densification modeling approach: from polymer, metals to ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spark%20plasma%20sintering%20densification%20modeling%20approach:%20from%20polymer,%20metals%20to%20ceramics&rft.jtitle=Journal%20of%20materials%20science&rft.au=Mani%C3%A8re,%20Charles&rft.date=2018-05-01&rft.volume=53&rft.issue=10&rft.spage=7869&rft.epage=7876&rft.pages=7869-7876&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-018-2096-8&rft_dat=%3Cgale_hal_p%3EA529093702%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259612675&rft_id=info:pmid/&rft_galeid=A529093702&rfr_iscdi=true