Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment

The study of fouling for tubular ceramic ultrafiltration (MWCO 300 kD) membranes during activated sludge filtration under constant flux conditions led to the experimental identification of two fouling processes: (1) At low recirculation velocity (0.5 m/s; Re∼1200), sludge floc particles were deposit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 1998-08, Vol.147 (1), p.1-12
Hauptverfasser: Tardieu, E, Grasmick, A, Geaugey, V, Manem, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 1
container_title Journal of membrane science
container_volume 147
creator Tardieu, E
Grasmick, A
Geaugey, V
Manem, J
description The study of fouling for tubular ceramic ultrafiltration (MWCO 300 kD) membranes during activated sludge filtration under constant flux conditions led to the experimental identification of two fouling processes: (1) At low recirculation velocity (0.5 m/s; Re∼1200), sludge floc particles were deposited on the membrane surface and this cake layer provoked a very quick increase of hydraulic resistance (>10 9 m −1 s −1). (2) However, under the usual recirculation conditions (4 m/s; Re∼9000), floc was not deposited. Filtration was stable for several days even with high fluxes (75–150 l/h m 2). Progressive membrane fouling resulted in a linear increase of transmembrane pressure over a certain time, and could be described by an increase in the hydraulic resistance, with d R/d t varying between 10 5 and 10 8 m −1 s −1 depending on hydrodynamic and biological conditions. Mechanism models (shear induced diffusion, inertial lift, surface transport) led to a very good qualitative description of these results, and revealed the major role of convective backtransport phenomena in fouling processes.
doi_str_mv 10.1016/S0376-7388(98)00091-X
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01736304v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037673889800091X</els_id><sourcerecordid>354740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-ccceec0443bfcd991f0a2c05c14b16823313bc40e0b242ffca63a244566149253</originalsourceid><addsrcrecordid>eNqFkVtrFEEQhRtRcI3-BKEfRMzDxL5Nz_STxKBZYUXwgnlrampqsGV2euzuJOy_d3Y37GueCorv1OUcxl5LcSGFtO9_CN3YqtFt-86150IIJ6ubJ2wl20ZXWir9lK1OyHP2Iue_QshGtG7Ffq93fYr9boJtQI5xKimOPA68C3GGVAKOxHuaYw4lxImHiQP_-vE7h3keA_W8RH4PudA9FEq8JIKypam8ZM8GGDO9eqhn7NfnTz-v1tXm2_WXq8tNhca1pUJEIhTG6G7A3jk5CFAoapSmk7ZVWkvdoREkOmXUMCBYDcqY2lppnKr1GTs_zv0Do59T2ELa-QjBry83ft9bHtVWC3MnF_btkZ1T_HdLufhtyEjjCBPF2-yV1NY4Zx4Fpa1rYQ9gfQQxxZwTDacTpPD7bPwhG7833rvWH7LxN4vuzcMCyAjjkGDCkE9ipa1tjFuwD0eMFgfvAiWfMdCE1IdEWHwfwyOL_gM-HaLG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16550694</pqid></control><display><type>article</type><title>Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment</title><source>Elsevier ScienceDirect Journals</source><creator>Tardieu, E ; Grasmick, A ; Geaugey, V ; Manem, J</creator><creatorcontrib>Tardieu, E ; Grasmick, A ; Geaugey, V ; Manem, J</creatorcontrib><description>The study of fouling for tubular ceramic ultrafiltration (MWCO 300 kD) membranes during activated sludge filtration under constant flux conditions led to the experimental identification of two fouling processes: (1) At low recirculation velocity (0.5 m/s; Re∼1200), sludge floc particles were deposited on the membrane surface and this cake layer provoked a very quick increase of hydraulic resistance (&gt;10 9 m −1 s −1). (2) However, under the usual recirculation conditions (4 m/s; Re∼9000), floc was not deposited. Filtration was stable for several days even with high fluxes (75–150 l/h m 2). Progressive membrane fouling resulted in a linear increase of transmembrane pressure over a certain time, and could be described by an increase in the hydraulic resistance, with d R/d t varying between 10 5 and 10 8 m −1 s −1 depending on hydrodynamic and biological conditions. Mechanism models (shear induced diffusion, inertial lift, surface transport) led to a very good qualitative description of these results, and revealed the major role of convective backtransport phenomena in fouling processes.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/S0376-7388(98)00091-X</identifier><identifier>CODEN: JMESDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Activated sludge ; Activated sludge process ; Applied sciences ; Backtransport ; Biological and medical sciences ; Biological treatment of waters ; Bioreactors ; Biotechnology ; Chemical Sciences ; Deposition ; Diffusion in solids ; Environment and pollution ; Exact sciences and technology ; Fouling ; Fundamental and applied biological sciences. Psychology ; General purification processes ; Hydrodynamics ; Industrial applications and implications. Economical aspects ; MBR ; Membranes ; Particles (particulate matter) ; Pollution ; Ultrafiltration ; Wastewater treatment ; Wastewaters ; Water treatment and pollution</subject><ispartof>Journal of membrane science, 1998-08, Vol.147 (1), p.1-12</ispartof><rights>1998 Elsevier Science B.V.</rights><rights>1998 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-ccceec0443bfcd991f0a2c05c14b16823313bc40e0b242ffca63a244566149253</citedby><cites>FETCH-LOGICAL-c498t-ccceec0443bfcd991f0a2c05c14b16823313bc40e0b242ffca63a244566149253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0376-7388(98)00091-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2366749$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.umontpellier.fr/hal-01736304$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tardieu, E</creatorcontrib><creatorcontrib>Grasmick, A</creatorcontrib><creatorcontrib>Geaugey, V</creatorcontrib><creatorcontrib>Manem, J</creatorcontrib><title>Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment</title><title>Journal of membrane science</title><description>The study of fouling for tubular ceramic ultrafiltration (MWCO 300 kD) membranes during activated sludge filtration under constant flux conditions led to the experimental identification of two fouling processes: (1) At low recirculation velocity (0.5 m/s; Re∼1200), sludge floc particles were deposited on the membrane surface and this cake layer provoked a very quick increase of hydraulic resistance (&gt;10 9 m −1 s −1). (2) However, under the usual recirculation conditions (4 m/s; Re∼9000), floc was not deposited. Filtration was stable for several days even with high fluxes (75–150 l/h m 2). Progressive membrane fouling resulted in a linear increase of transmembrane pressure over a certain time, and could be described by an increase in the hydraulic resistance, with d R/d t varying between 10 5 and 10 8 m −1 s −1 depending on hydrodynamic and biological conditions. Mechanism models (shear induced diffusion, inertial lift, surface transport) led to a very good qualitative description of these results, and revealed the major role of convective backtransport phenomena in fouling processes.</description><subject>Activated sludge</subject><subject>Activated sludge process</subject><subject>Applied sciences</subject><subject>Backtransport</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Chemical Sciences</subject><subject>Deposition</subject><subject>Diffusion in solids</subject><subject>Environment and pollution</subject><subject>Exact sciences and technology</subject><subject>Fouling</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General purification processes</subject><subject>Hydrodynamics</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>MBR</subject><subject>Membranes</subject><subject>Particles (particulate matter)</subject><subject>Pollution</subject><subject>Ultrafiltration</subject><subject>Wastewater treatment</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkVtrFEEQhRtRcI3-BKEfRMzDxL5Nz_STxKBZYUXwgnlrampqsGV2euzuJOy_d3Y37GueCorv1OUcxl5LcSGFtO9_CN3YqtFt-86150IIJ6ubJ2wl20ZXWir9lK1OyHP2Iue_QshGtG7Ffq93fYr9boJtQI5xKimOPA68C3GGVAKOxHuaYw4lxImHiQP_-vE7h3keA_W8RH4PudA9FEq8JIKypam8ZM8GGDO9eqhn7NfnTz-v1tXm2_WXq8tNhca1pUJEIhTG6G7A3jk5CFAoapSmk7ZVWkvdoREkOmXUMCBYDcqY2lppnKr1GTs_zv0Do59T2ELa-QjBry83ft9bHtVWC3MnF_btkZ1T_HdLufhtyEjjCBPF2-yV1NY4Zx4Fpa1rYQ9gfQQxxZwTDacTpPD7bPwhG7833rvWH7LxN4vuzcMCyAjjkGDCkE9ipa1tjFuwD0eMFgfvAiWfMdCE1IdEWHwfwyOL_gM-HaLG</recordid><startdate>19980819</startdate><enddate>19980819</enddate><creator>Tardieu, E</creator><creator>Grasmick, A</creator><creator>Geaugey, V</creator><creator>Manem, J</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>1XC</scope></search><sort><creationdate>19980819</creationdate><title>Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment</title><author>Tardieu, E ; Grasmick, A ; Geaugey, V ; Manem, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-ccceec0443bfcd991f0a2c05c14b16823313bc40e0b242ffca63a244566149253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Activated sludge</topic><topic>Activated sludge process</topic><topic>Applied sciences</topic><topic>Backtransport</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Chemical Sciences</topic><topic>Deposition</topic><topic>Diffusion in solids</topic><topic>Environment and pollution</topic><topic>Exact sciences and technology</topic><topic>Fouling</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General purification processes</topic><topic>Hydrodynamics</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>MBR</topic><topic>Membranes</topic><topic>Particles (particulate matter)</topic><topic>Pollution</topic><topic>Ultrafiltration</topic><topic>Wastewater treatment</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tardieu, E</creatorcontrib><creatorcontrib>Grasmick, A</creatorcontrib><creatorcontrib>Geaugey, V</creatorcontrib><creatorcontrib>Manem, J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tardieu, E</au><au>Grasmick, A</au><au>Geaugey, V</au><au>Manem, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment</atitle><jtitle>Journal of membrane science</jtitle><date>1998-08-19</date><risdate>1998</risdate><volume>147</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0376-7388</issn><eissn>1873-3123</eissn><coden>JMESDO</coden><abstract>The study of fouling for tubular ceramic ultrafiltration (MWCO 300 kD) membranes during activated sludge filtration under constant flux conditions led to the experimental identification of two fouling processes: (1) At low recirculation velocity (0.5 m/s; Re∼1200), sludge floc particles were deposited on the membrane surface and this cake layer provoked a very quick increase of hydraulic resistance (&gt;10 9 m −1 s −1). (2) However, under the usual recirculation conditions (4 m/s; Re∼9000), floc was not deposited. Filtration was stable for several days even with high fluxes (75–150 l/h m 2). Progressive membrane fouling resulted in a linear increase of transmembrane pressure over a certain time, and could be described by an increase in the hydraulic resistance, with d R/d t varying between 10 5 and 10 8 m −1 s −1 depending on hydrodynamic and biological conditions. Mechanism models (shear induced diffusion, inertial lift, surface transport) led to a very good qualitative description of these results, and revealed the major role of convective backtransport phenomena in fouling processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0376-7388(98)00091-X</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0376-7388
ispartof Journal of membrane science, 1998-08, Vol.147 (1), p.1-12
issn 0376-7388
1873-3123
language eng
recordid cdi_hal_primary_oai_HAL_hal_01736304v1
source Elsevier ScienceDirect Journals
subjects Activated sludge
Activated sludge process
Applied sciences
Backtransport
Biological and medical sciences
Biological treatment of waters
Bioreactors
Biotechnology
Chemical Sciences
Deposition
Diffusion in solids
Environment and pollution
Exact sciences and technology
Fouling
Fundamental and applied biological sciences. Psychology
General purification processes
Hydrodynamics
Industrial applications and implications. Economical aspects
MBR
Membranes
Particles (particulate matter)
Pollution
Ultrafiltration
Wastewater treatment
Wastewaters
Water treatment and pollution
title Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20control%20of%20bioparticle%20deposition%20in%20a%20MBR%20applied%20to%20wastewater%20treatment&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Tardieu,%20E&rft.date=1998-08-19&rft.volume=147&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0376-7388&rft.eissn=1873-3123&rft.coden=JMESDO&rft_id=info:doi/10.1016/S0376-7388(98)00091-X&rft_dat=%3Cproquest_hal_p%3E354740%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16550694&rft_id=info:pmid/&rft_els_id=S037673889800091X&rfr_iscdi=true