La3TaO7 derivatives with Weberite structure type: Possible electrolytes for solid oxide fuel cells and high temperature electrolysers

In this study, with the aim to enhance the ionic conduction of known structures by defect chemistry, the La2O3-Ta2O5 system was considered with a focus on the La3TaO7 phase whose structure is of Weberite type. In order to predict possible preferential substitution sites and substitution elements, at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Chimie 2010-11, Vol.13 (11), p.1351-1358
Hauptverfasser: PREUX, Nicolas, ROLLE, Aurélie, MERLIN, Cindy, BENAMIRA, Messaoud, MALYS, Marcin, ESTOURNES, Claude, RUBBENS, Annick, VANNIER, Rose-Noëlle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1358
container_issue 11
container_start_page 1351
container_title Comptes rendus. Chimie
container_volume 13
creator PREUX, Nicolas
ROLLE, Aurélie
MERLIN, Cindy
BENAMIRA, Messaoud
MALYS, Marcin
ESTOURNES, Claude
RUBBENS, Annick
VANNIER, Rose-Noëlle
description In this study, with the aim to enhance the ionic conduction of known structures by defect chemistry, the La2O3-Ta2O5 system was considered with a focus on the La3TaO7 phase whose structure is of Weberite type. In order to predict possible preferential substitution sites and substitution elements, atomistic simulation was used as a first approach. A solid solution La3−xSrxTaO7−x/2 was confirmed by X-ray diffraction and Raman spectroscopy; it extends for a substitution ratio up to x = 0.15. Whereas La3TaO7 is a poor oxide ion conductor (σ700 °C = 2 × 10−5S.cm−1), at 700 °C, its ionic conductivity is increased by more than one order of magnitude when 3.3% molar strontium is introduced in the structure (σ700 °C = 2 × 10−4S.cm−1).
doi_str_mv 10.1016/j.crci.2010.07.009
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01736265v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01736265v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-f731515b436936e8912167dbeff48b8acaaf0ac6b56cdb08c8ac401bb72721273</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhhdRsFZfwFMuHjxsTTa7ya63UtQKhXqoeAxJduKmpN2SpNU-gO9taqWnGX7-b2C-LLsleEQwYQ_LkfbajgqcAsxHGDdn2YDUvM5JVdLztDNKcszL-jK7CmGJE9RUbJD9zCRdyDlHLXi7k9HuIKAvGzv0ASpFEVCIfqvj1gOK-w08orc-BKscIHCgo-_dPibG9B6F3tkW9d-2BWS24JAG5wKS6xZ19rNDEVYb8PLv1gkO4MN1dmGkC3DzP4fZ-_PTYjLNZ_OX18l4lmtaVTE3nJKKVKqkrKEM6oYUhPFWgTFlrWqppTRYaqYqpluFa52iEhOleMELUnA6zO6PdzvpxMbblfR70UsrpuOZOGSYcMoKVu1I6hbHrvbpYQ_mBBAsDtLFUhyki4N0gblI0hN0d4Q2MmjpjJdrbcOJLCgteU05_QVbHoYO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>La3TaO7 derivatives with Weberite structure type: Possible electrolytes for solid oxide fuel cells and high temperature electrolysers</title><source>Elektronische Zeitschriftenbibliothek (Open access)</source><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>PREUX, Nicolas ; ROLLE, Aurélie ; MERLIN, Cindy ; BENAMIRA, Messaoud ; MALYS, Marcin ; ESTOURNES, Claude ; RUBBENS, Annick ; VANNIER, Rose-Noëlle</creator><creatorcontrib>PREUX, Nicolas ; ROLLE, Aurélie ; MERLIN, Cindy ; BENAMIRA, Messaoud ; MALYS, Marcin ; ESTOURNES, Claude ; RUBBENS, Annick ; VANNIER, Rose-Noëlle</creatorcontrib><description>In this study, with the aim to enhance the ionic conduction of known structures by defect chemistry, the La2O3-Ta2O5 system was considered with a focus on the La3TaO7 phase whose structure is of Weberite type. In order to predict possible preferential substitution sites and substitution elements, atomistic simulation was used as a first approach. A solid solution La3−xSrxTaO7−x/2 was confirmed by X-ray diffraction and Raman spectroscopy; it extends for a substitution ratio up to x = 0.15. Whereas La3TaO7 is a poor oxide ion conductor (σ700 °C = 2 × 10−5S.cm−1), at 700 °C, its ionic conductivity is increased by more than one order of magnitude when 3.3% molar strontium is introduced in the structure (σ700 °C = 2 × 10−4S.cm−1).</description><identifier>ISSN: 1631-0748</identifier><identifier>ISSN: 1878-1543</identifier><identifier>EISSN: 1878-1543</identifier><identifier>DOI: 10.1016/j.crci.2010.07.009</identifier><language>eng</language><publisher>Paris: Elsevier</publisher><subject>Analytical chemistry ; Applied sciences ; Chemical Sciences ; Chemistry ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Engineering Sciences ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Material chemistry ; Materials ; Properties of electrolytes: conductivity</subject><ispartof>Comptes rendus. Chimie, 2010-11, Vol.13 (11), p.1351-1358</ispartof><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-f731515b436936e8912167dbeff48b8acaaf0ac6b56cdb08c8ac401bb72721273</citedby><cites>FETCH-LOGICAL-c355t-f731515b436936e8912167dbeff48b8acaaf0ac6b56cdb08c8ac401bb72721273</cites><orcidid>0000-0002-7494-9230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23347837$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01736265$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>PREUX, Nicolas</creatorcontrib><creatorcontrib>ROLLE, Aurélie</creatorcontrib><creatorcontrib>MERLIN, Cindy</creatorcontrib><creatorcontrib>BENAMIRA, Messaoud</creatorcontrib><creatorcontrib>MALYS, Marcin</creatorcontrib><creatorcontrib>ESTOURNES, Claude</creatorcontrib><creatorcontrib>RUBBENS, Annick</creatorcontrib><creatorcontrib>VANNIER, Rose-Noëlle</creatorcontrib><title>La3TaO7 derivatives with Weberite structure type: Possible electrolytes for solid oxide fuel cells and high temperature electrolysers</title><title>Comptes rendus. Chimie</title><description>In this study, with the aim to enhance the ionic conduction of known structures by defect chemistry, the La2O3-Ta2O5 system was considered with a focus on the La3TaO7 phase whose structure is of Weberite type. In order to predict possible preferential substitution sites and substitution elements, atomistic simulation was used as a first approach. A solid solution La3−xSrxTaO7−x/2 was confirmed by X-ray diffraction and Raman spectroscopy; it extends for a substitution ratio up to x = 0.15. Whereas La3TaO7 is a poor oxide ion conductor (σ700 °C = 2 × 10−5S.cm−1), at 700 °C, its ionic conductivity is increased by more than one order of magnitude when 3.3% molar strontium is introduced in the structure (σ700 °C = 2 × 10−4S.cm−1).</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering Sciences</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Material chemistry</subject><subject>Materials</subject><subject>Properties of electrolytes: conductivity</subject><issn>1631-0748</issn><issn>1878-1543</issn><issn>1878-1543</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKAzEQhhdRsFZfwFMuHjxsTTa7ya63UtQKhXqoeAxJduKmpN2SpNU-gO9taqWnGX7-b2C-LLsleEQwYQ_LkfbajgqcAsxHGDdn2YDUvM5JVdLztDNKcszL-jK7CmGJE9RUbJD9zCRdyDlHLXi7k9HuIKAvGzv0ASpFEVCIfqvj1gOK-w08orc-BKscIHCgo-_dPibG9B6F3tkW9d-2BWS24JAG5wKS6xZ19rNDEVYb8PLv1gkO4MN1dmGkC3DzP4fZ-_PTYjLNZ_OX18l4lmtaVTE3nJKKVKqkrKEM6oYUhPFWgTFlrWqppTRYaqYqpluFa52iEhOleMELUnA6zO6PdzvpxMbblfR70UsrpuOZOGSYcMoKVu1I6hbHrvbpYQ_mBBAsDtLFUhyki4N0gblI0hN0d4Q2MmjpjJdrbcOJLCgteU05_QVbHoYO</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>PREUX, Nicolas</creator><creator>ROLLE, Aurélie</creator><creator>MERLIN, Cindy</creator><creator>BENAMIRA, Messaoud</creator><creator>MALYS, Marcin</creator><creator>ESTOURNES, Claude</creator><creator>RUBBENS, Annick</creator><creator>VANNIER, Rose-Noëlle</creator><general>Elsevier</general><general>Académie des sciences (Paris)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7494-9230</orcidid></search><sort><creationdate>20101101</creationdate><title>La3TaO7 derivatives with Weberite structure type: Possible electrolytes for solid oxide fuel cells and high temperature electrolysers</title><author>PREUX, Nicolas ; ROLLE, Aurélie ; MERLIN, Cindy ; BENAMIRA, Messaoud ; MALYS, Marcin ; ESTOURNES, Claude ; RUBBENS, Annick ; VANNIER, Rose-Noëlle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-f731515b436936e8912167dbeff48b8acaaf0ac6b56cdb08c8ac401bb72721273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering Sciences</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Material chemistry</topic><topic>Materials</topic><topic>Properties of electrolytes: conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PREUX, Nicolas</creatorcontrib><creatorcontrib>ROLLE, Aurélie</creatorcontrib><creatorcontrib>MERLIN, Cindy</creatorcontrib><creatorcontrib>BENAMIRA, Messaoud</creatorcontrib><creatorcontrib>MALYS, Marcin</creatorcontrib><creatorcontrib>ESTOURNES, Claude</creatorcontrib><creatorcontrib>RUBBENS, Annick</creatorcontrib><creatorcontrib>VANNIER, Rose-Noëlle</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Comptes rendus. Chimie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PREUX, Nicolas</au><au>ROLLE, Aurélie</au><au>MERLIN, Cindy</au><au>BENAMIRA, Messaoud</au><au>MALYS, Marcin</au><au>ESTOURNES, Claude</au><au>RUBBENS, Annick</au><au>VANNIER, Rose-Noëlle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>La3TaO7 derivatives with Weberite structure type: Possible electrolytes for solid oxide fuel cells and high temperature electrolysers</atitle><jtitle>Comptes rendus. Chimie</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>13</volume><issue>11</issue><spage>1351</spage><epage>1358</epage><pages>1351-1358</pages><issn>1631-0748</issn><issn>1878-1543</issn><eissn>1878-1543</eissn><abstract>In this study, with the aim to enhance the ionic conduction of known structures by defect chemistry, the La2O3-Ta2O5 system was considered with a focus on the La3TaO7 phase whose structure is of Weberite type. In order to predict possible preferential substitution sites and substitution elements, atomistic simulation was used as a first approach. A solid solution La3−xSrxTaO7−x/2 was confirmed by X-ray diffraction and Raman spectroscopy; it extends for a substitution ratio up to x = 0.15. Whereas La3TaO7 is a poor oxide ion conductor (σ700 °C = 2 × 10−5S.cm−1), at 700 °C, its ionic conductivity is increased by more than one order of magnitude when 3.3% molar strontium is introduced in the structure (σ700 °C = 2 × 10−4S.cm−1).</abstract><cop>Paris</cop><pub>Elsevier</pub><doi>10.1016/j.crci.2010.07.009</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7494-9230</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1631-0748
ispartof Comptes rendus. Chimie, 2010-11, Vol.13 (11), p.1351-1358
issn 1631-0748
1878-1543
1878-1543
language eng
recordid cdi_hal_primary_oai_HAL_hal_01736265v1
source Elektronische Zeitschriftenbibliothek (Open access); ScienceDirect Freedom Collection (Elsevier)
subjects Analytical chemistry
Applied sciences
Chemical Sciences
Chemistry
Electrochemistry
Energy
Energy. Thermal use of fuels
Engineering Sciences
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
General and physical chemistry
Material chemistry
Materials
Properties of electrolytes: conductivity
title La3TaO7 derivatives with Weberite structure type: Possible electrolytes for solid oxide fuel cells and high temperature electrolysers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A55%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=La3TaO7%20derivatives%20with%20Weberite%20structure%20type:%20Possible%20electrolytes%20for%20solid%20oxide%20fuel%20cells%20and%20high%20temperature%20electrolysers&rft.jtitle=Comptes%20rendus.%20Chimie&rft.au=PREUX,%20Nicolas&rft.date=2010-11-01&rft.volume=13&rft.issue=11&rft.spage=1351&rft.epage=1358&rft.pages=1351-1358&rft.issn=1631-0748&rft.eissn=1878-1543&rft_id=info:doi/10.1016/j.crci.2010.07.009&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01736265v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true