Ion beam induced defects in crystalline silicon

A short review of the current understanding and modelling of the formation of ion beam induced defects in crystalline silicon is given in the first part of this article. Some recent experiments on the evolution of {1 1 3} defects formed after Si + implants in CVD grown wafers and on the formation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2004-02, Vol.216 (1-4), p.46-56
Hauptverfasser: Cristiano, F, Cherkashin, N, Hebras, X, Calvo, P, Lamrani, Y, Scheid, E, de Mauduit, B, Colombeau, B, Lerch, W, Paul, S, Claverie, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A short review of the current understanding and modelling of the formation of ion beam induced defects in crystalline silicon is given in the first part of this article. Some recent experiments on the evolution of {1 1 3} defects formed after Si + implants in CVD grown wafers and on the formation of small clusters in ultra-low energy high-dose B implanted Si are then presented. It is found that, independently of the experimental conditions, {1 1 3} defects evolve in all cases following a non-conservative Ostwald Ripening mechanism. In some cases, {1 1 3} defects have been found to transform into dislocation loops, while in other cases they completely dissolve during annealing. After RTA annealing of ultra-low energy high-dose B + implanted Si, small two-dimensional {1 0 0} loops are formed. Both Si and B atoms are contained in the defects. These results indicate that boron interstitial clusters can be imaged by TEM and thus can be much bigger than generally assumed.
ISSN:0168-583X
1872-9584
1872-9584
0168-583X
DOI:10.1016/j.nimb.2003.11.019