On two-spectra inverse problems

We consider a two-spectra inverse problem for the one-dimensional Schrödinger equation with boundary conditions containing rational Herglotz-Nevanlinna functions of the eigenvalue parameter and provide a complete solution of this problem.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2020-10, Vol.148 (10), p.4491-4502
1. Verfasser: Guliyev, Namig J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4502
container_issue 10
container_start_page 4491
container_title Proceedings of the American Mathematical Society
container_volume 148
creator Guliyev, Namig J.
description We consider a two-spectra inverse problem for the one-dimensional Schrödinger equation with boundary conditions containing rational Herglotz-Nevanlinna functions of the eigenvalue parameter and provide a complete solution of this problem.
doi_str_mv 10.1090/proc/15155
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01726268v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01726268v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a331t-d07f2d49de57fb9b50a0ec04278524decc1e825b89808368a8d95f6be144fd013</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEc3_gG7caEQ5yVN0mQ5DOoIhdnoOqT5wEo7LUkZ8d_bWnHp6vIu593FQeiawAMBBesh9nZNOOH8BGUEpMRCUnGKMgCgWKlCnaOLlD6mkyhWZuhmf8jHzx6nwdsxmrw5HH1MPp-G6tZ36RKdBdMmf_WbK_T29Pi63eFq__yy3VTYFAUZsYMyUMeU87wMtao5GPAWGC0lp8x5a4mXlNdSSZCFkEY6xYOoPWEsOCDFCt0tu--m1UNsOhO_dG8avdtUeu6AlFRQIY8ze7-wNvYpRR_-HgjoWYOeNegfDRN8u8CmS_9x3zbYWpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On two-spectra inverse problems</title><source>American Mathematical Society Publications</source><creator>Guliyev, Namig J.</creator><creatorcontrib>Guliyev, Namig J.</creatorcontrib><description>We consider a two-spectra inverse problem for the one-dimensional Schrödinger equation with boundary conditions containing rational Herglotz-Nevanlinna functions of the eigenvalue parameter and provide a complete solution of this problem.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15155</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Classical Analysis and ODEs ; Functional Analysis ; Mathematical Physics ; Mathematics ; Physics ; Spectral Theory</subject><ispartof>Proceedings of the American Mathematical Society, 2020-10, Vol.148 (10), p.4491-4502</ispartof><rights>Copyright 2020, American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a331t-d07f2d49de57fb9b50a0ec04278524decc1e825b89808368a8d95f6be144fd013</citedby><orcidid>0000-0002-5633-6748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2020-148-10/S0002-9939-2020-15155-6/S0002-9939-2020-15155-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2020-148-10/S0002-9939-2020-15155-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,230,314,780,784,885,23328,27924,27925,77836,77846</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01726268$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guliyev, Namig J.</creatorcontrib><title>On two-spectra inverse problems</title><title>Proceedings of the American Mathematical Society</title><description>We consider a two-spectra inverse problem for the one-dimensional Schrödinger equation with boundary conditions containing rational Herglotz-Nevanlinna functions of the eigenvalue parameter and provide a complete solution of this problem.</description><subject>Classical Analysis and ODEs</subject><subject>Functional Analysis</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Spectral Theory</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEc3_gG7caEQ5yVN0mQ5DOoIhdnoOqT5wEo7LUkZ8d_bWnHp6vIu593FQeiawAMBBesh9nZNOOH8BGUEpMRCUnGKMgCgWKlCnaOLlD6mkyhWZuhmf8jHzx6nwdsxmrw5HH1MPp-G6tZ36RKdBdMmf_WbK_T29Pi63eFq__yy3VTYFAUZsYMyUMeU87wMtao5GPAWGC0lp8x5a4mXlNdSSZCFkEY6xYOoPWEsOCDFCt0tu--m1UNsOhO_dG8avdtUeu6AlFRQIY8ze7-wNvYpRR_-HgjoWYOeNegfDRN8u8CmS_9x3zbYWpA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Guliyev, Namig J.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5633-6748</orcidid></search><sort><creationdate>20201001</creationdate><title>On two-spectra inverse problems</title><author>Guliyev, Namig J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a331t-d07f2d49de57fb9b50a0ec04278524decc1e825b89808368a8d95f6be144fd013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical Analysis and ODEs</topic><topic>Functional Analysis</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Spectral Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guliyev, Namig J.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guliyev, Namig J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On two-spectra inverse problems</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>148</volume><issue>10</issue><spage>4491</spage><epage>4502</epage><pages>4491-4502</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We consider a two-spectra inverse problem for the one-dimensional Schrödinger equation with boundary conditions containing rational Herglotz-Nevanlinna functions of the eigenvalue parameter and provide a complete solution of this problem.</abstract><pub>American Mathematical Society</pub><doi>10.1090/proc/15155</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5633-6748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2020-10, Vol.148 (10), p.4491-4502
issn 0002-9939
1088-6826
language eng
recordid cdi_hal_primary_oai_HAL_hal_01726268v1
source American Mathematical Society Publications
subjects Classical Analysis and ODEs
Functional Analysis
Mathematical Physics
Mathematics
Physics
Spectral Theory
title On two-spectra inverse problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20two-spectra%20inverse%20problems&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Guliyev,%20Namig%20J.&rft.date=2020-10-01&rft.volume=148&rft.issue=10&rft.spage=4491&rft.epage=4502&rft.pages=4491-4502&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15155&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01726268v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true