Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap

Studying the scavenging of aerosol particle by drops has been a key topic of atmospheric science since the late seventies, given its relationships with atmospheric depollution, with the physics of clouds and precipitations and with global warming. However, the efficiency with which falling droplets...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2017-10, Vol.166, p.519-530
Hauptverfasser: Cherrier, Gaël, Belut, Emmanuel, Gerardin, Fabien, Tanière, Anne, Rimbert, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 530
container_issue
container_start_page 519
container_title Atmospheric environment (1994)
container_volume 166
creator Cherrier, Gaël
Belut, Emmanuel
Gerardin, Fabien
Tanière, Anne
Rimbert, Nicolas
description Studying the scavenging of aerosol particle by drops has been a key topic of atmospheric science since the late seventies, given its relationships with atmospheric depollution, with the physics of clouds and precipitations and with global warming. However, the efficiency with which falling droplets capture aerosol particles is still imprecisely known for a wide range of drop Reynolds number, Weber numbers, aerosol particles inertia and Brownian Schmidt number. In this paper, microphysical modeling is used to compute precisely the drop collection efficiency for aerosol particles around the Greenfield gap which are submitted to both drag force and Brownian motion, for droplets falling in quiescent air at moderate Reynolds number (Red≤100). Depending on the impactional or diffusional parameters, the collection regions on the drop surface are highlighted. The results are then compressed by a correlation which extends the field of use of the theoretical model of Wang et al. (1978) by taking inertial capture into account. The proposed correlation is suitable to estimate the aerosol scavenging efficiency for a non-evaporating, non-deforming drop with Red≤100 and particle Stokes number Stp∈[0;+∞]. In case of evaporating or condensing droplets, the effect of thermophoresis and diffusiophoresis are also taken into account through an extension of the formulation proposed by Wang et al. (1978) and hence with similar accuracy. •Microphysical modeling of aerosol scavenging by a drop.•Completing missing collection efficiency data in the Greenfield gap.•Highlighting preferential capture zone on the drop surface.•Proposing a correlation extending the Wang et al. (1978) collection kernel.
doi_str_mv 10.1016/j.atmosenv.2017.07.052
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01723320v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1352231017305010</els_id><sourcerecordid>oai_HAL_hal_01723320v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-945cea101d36235681aadc7502ddf9815c39ce10089a106413850f0c3467e5643</originalsourceid><addsrcrecordid>eNqFUE1LAzEUXETBWv0LkquHXV-SzX54shRthYoXxWOIyds2Jd1dkmWh_94sVa_CwBseMwMzSXJLIaNAi_t9poZDF7AdMwa0zCBCsLNkRquSp6zK8_PIuWAp4xQuk6sQ9gDAy7qcJZ8L9F3oHOmVH6x2GEjQasR2a9st-ToSRYzveofDA3m1OtLdMVitHDl0Bt0ksi0ZdkhWHrFtLDpDtqq_Ti4a5QLe_Nx58vH89L5cp5u31ctysUk1z4shrXOhUcUahheMi6KiShldCmDGNHVFhea1RgpQ1VFV5JRXAhqYzCWKIufz5O6Uu1NO9t4elD_KTlm5Xmzk9IuLMM4ZjDRqi5M21gjBY_NnoCCnKeVe_k4ppyklRAgWjY8nI8Ymo0Uvg7bYajTWox6k6ex_Ed-rUn-2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap</title><source>Elsevier ScienceDirect Journals</source><creator>Cherrier, Gaël ; Belut, Emmanuel ; Gerardin, Fabien ; Tanière, Anne ; Rimbert, Nicolas</creator><creatorcontrib>Cherrier, Gaël ; Belut, Emmanuel ; Gerardin, Fabien ; Tanière, Anne ; Rimbert, Nicolas</creatorcontrib><description>Studying the scavenging of aerosol particle by drops has been a key topic of atmospheric science since the late seventies, given its relationships with atmospheric depollution, with the physics of clouds and precipitations and with global warming. However, the efficiency with which falling droplets capture aerosol particles is still imprecisely known for a wide range of drop Reynolds number, Weber numbers, aerosol particles inertia and Brownian Schmidt number. In this paper, microphysical modeling is used to compute precisely the drop collection efficiency for aerosol particles around the Greenfield gap which are submitted to both drag force and Brownian motion, for droplets falling in quiescent air at moderate Reynolds number (Red≤100). Depending on the impactional or diffusional parameters, the collection regions on the drop surface are highlighted. The results are then compressed by a correlation which extends the field of use of the theoretical model of Wang et al. (1978) by taking inertial capture into account. The proposed correlation is suitable to estimate the aerosol scavenging efficiency for a non-evaporating, non-deforming drop with Red≤100 and particle Stokes number Stp∈[0;+∞]. In case of evaporating or condensing droplets, the effect of thermophoresis and diffusiophoresis are also taken into account through an extension of the formulation proposed by Wang et al. (1978) and hence with similar accuracy. •Microphysical modeling of aerosol scavenging by a drop.•Completing missing collection efficiency data in the Greenfield gap.•Highlighting preferential capture zone on the drop surface.•Proposing a correlation extending the Wang et al. (1978) collection kernel.</description><identifier>ISSN: 1352-2310</identifier><identifier>EISSN: 1873-2844</identifier><identifier>DOI: 10.1016/j.atmosenv.2017.07.052</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aerosol particles ; Collection kernel ; Droplet ; Engineering Sciences ; Fluids mechanics ; Mechanics ; Reactive fluid environment ; Scavenging ; Thermics</subject><ispartof>Atmospheric environment (1994), 2017-10, Vol.166, p.519-530</ispartof><rights>2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-945cea101d36235681aadc7502ddf9815c39ce10089a106413850f0c3467e5643</citedby><cites>FETCH-LOGICAL-c346t-945cea101d36235681aadc7502ddf9815c39ce10089a106413850f0c3467e5643</cites><orcidid>0000-0002-7298-7751 ; 0000-0001-8067-0327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1352231017305010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01723320$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cherrier, Gaël</creatorcontrib><creatorcontrib>Belut, Emmanuel</creatorcontrib><creatorcontrib>Gerardin, Fabien</creatorcontrib><creatorcontrib>Tanière, Anne</creatorcontrib><creatorcontrib>Rimbert, Nicolas</creatorcontrib><title>Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap</title><title>Atmospheric environment (1994)</title><description>Studying the scavenging of aerosol particle by drops has been a key topic of atmospheric science since the late seventies, given its relationships with atmospheric depollution, with the physics of clouds and precipitations and with global warming. However, the efficiency with which falling droplets capture aerosol particles is still imprecisely known for a wide range of drop Reynolds number, Weber numbers, aerosol particles inertia and Brownian Schmidt number. In this paper, microphysical modeling is used to compute precisely the drop collection efficiency for aerosol particles around the Greenfield gap which are submitted to both drag force and Brownian motion, for droplets falling in quiescent air at moderate Reynolds number (Red≤100). Depending on the impactional or diffusional parameters, the collection regions on the drop surface are highlighted. The results are then compressed by a correlation which extends the field of use of the theoretical model of Wang et al. (1978) by taking inertial capture into account. The proposed correlation is suitable to estimate the aerosol scavenging efficiency for a non-evaporating, non-deforming drop with Red≤100 and particle Stokes number Stp∈[0;+∞]. In case of evaporating or condensing droplets, the effect of thermophoresis and diffusiophoresis are also taken into account through an extension of the formulation proposed by Wang et al. (1978) and hence with similar accuracy. •Microphysical modeling of aerosol scavenging by a drop.•Completing missing collection efficiency data in the Greenfield gap.•Highlighting preferential capture zone on the drop surface.•Proposing a correlation extending the Wang et al. (1978) collection kernel.</description><subject>Aerosol particles</subject><subject>Collection kernel</subject><subject>Droplet</subject><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Mechanics</subject><subject>Reactive fluid environment</subject><subject>Scavenging</subject><subject>Thermics</subject><issn>1352-2310</issn><issn>1873-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUXETBWv0LkquHXV-SzX54shRthYoXxWOIyds2Jd1dkmWh_94sVa_CwBseMwMzSXJLIaNAi_t9poZDF7AdMwa0zCBCsLNkRquSp6zK8_PIuWAp4xQuk6sQ9gDAy7qcJZ8L9F3oHOmVH6x2GEjQasR2a9st-ToSRYzveofDA3m1OtLdMVitHDl0Bt0ksi0ZdkhWHrFtLDpDtqq_Ti4a5QLe_Nx58vH89L5cp5u31ctysUk1z4shrXOhUcUahheMi6KiShldCmDGNHVFhea1RgpQ1VFV5JRXAhqYzCWKIufz5O6Uu1NO9t4elD_KTlm5Xmzk9IuLMM4ZjDRqi5M21gjBY_NnoCCnKeVe_k4ppyklRAgWjY8nI8Ymo0Uvg7bYajTWox6k6ex_Ed-rUn-2</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Cherrier, Gaël</creator><creator>Belut, Emmanuel</creator><creator>Gerardin, Fabien</creator><creator>Tanière, Anne</creator><creator>Rimbert, Nicolas</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7298-7751</orcidid><orcidid>https://orcid.org/0000-0001-8067-0327</orcidid></search><sort><creationdate>20171001</creationdate><title>Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap</title><author>Cherrier, Gaël ; Belut, Emmanuel ; Gerardin, Fabien ; Tanière, Anne ; Rimbert, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-945cea101d36235681aadc7502ddf9815c39ce10089a106413850f0c3467e5643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerosol particles</topic><topic>Collection kernel</topic><topic>Droplet</topic><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Mechanics</topic><topic>Reactive fluid environment</topic><topic>Scavenging</topic><topic>Thermics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherrier, Gaël</creatorcontrib><creatorcontrib>Belut, Emmanuel</creatorcontrib><creatorcontrib>Gerardin, Fabien</creatorcontrib><creatorcontrib>Tanière, Anne</creatorcontrib><creatorcontrib>Rimbert, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Atmospheric environment (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherrier, Gaël</au><au>Belut, Emmanuel</au><au>Gerardin, Fabien</au><au>Tanière, Anne</au><au>Rimbert, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap</atitle><jtitle>Atmospheric environment (1994)</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>166</volume><spage>519</spage><epage>530</epage><pages>519-530</pages><issn>1352-2310</issn><eissn>1873-2844</eissn><abstract>Studying the scavenging of aerosol particle by drops has been a key topic of atmospheric science since the late seventies, given its relationships with atmospheric depollution, with the physics of clouds and precipitations and with global warming. However, the efficiency with which falling droplets capture aerosol particles is still imprecisely known for a wide range of drop Reynolds number, Weber numbers, aerosol particles inertia and Brownian Schmidt number. In this paper, microphysical modeling is used to compute precisely the drop collection efficiency for aerosol particles around the Greenfield gap which are submitted to both drag force and Brownian motion, for droplets falling in quiescent air at moderate Reynolds number (Red≤100). Depending on the impactional or diffusional parameters, the collection regions on the drop surface are highlighted. The results are then compressed by a correlation which extends the field of use of the theoretical model of Wang et al. (1978) by taking inertial capture into account. The proposed correlation is suitable to estimate the aerosol scavenging efficiency for a non-evaporating, non-deforming drop with Red≤100 and particle Stokes number Stp∈[0;+∞]. In case of evaporating or condensing droplets, the effect of thermophoresis and diffusiophoresis are also taken into account through an extension of the formulation proposed by Wang et al. (1978) and hence with similar accuracy. •Microphysical modeling of aerosol scavenging by a drop.•Completing missing collection efficiency data in the Greenfield gap.•Highlighting preferential capture zone on the drop surface.•Proposing a correlation extending the Wang et al. (1978) collection kernel.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.atmosenv.2017.07.052</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7298-7751</orcidid><orcidid>https://orcid.org/0000-0001-8067-0327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1352-2310
ispartof Atmospheric environment (1994), 2017-10, Vol.166, p.519-530
issn 1352-2310
1873-2844
language eng
recordid cdi_hal_primary_oai_HAL_hal_01723320v1
source Elsevier ScienceDirect Journals
subjects Aerosol particles
Collection kernel
Droplet
Engineering Sciences
Fluids mechanics
Mechanics
Reactive fluid environment
Scavenging
Thermics
title Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerosol%20particles%20scavenging%20by%20a%20droplet:%20Microphysical%20modeling%20in%20the%20Greenfield%20gap&rft.jtitle=Atmospheric%20environment%20(1994)&rft.au=Cherrier,%20Ga%C3%ABl&rft.date=2017-10-01&rft.volume=166&rft.spage=519&rft.epage=530&rft.pages=519-530&rft.issn=1352-2310&rft.eissn=1873-2844&rft_id=info:doi/10.1016/j.atmosenv.2017.07.052&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01723320v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1352231017305010&rfr_iscdi=true