Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap
Studying the scavenging of aerosol particle by drops has been a key topic of atmospheric science since the late seventies, given its relationships with atmospheric depollution, with the physics of clouds and precipitations and with global warming. However, the efficiency with which falling droplets...
Gespeichert in:
Veröffentlicht in: | Atmospheric environment (1994) 2017-10, Vol.166, p.519-530 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 530 |
---|---|
container_issue | |
container_start_page | 519 |
container_title | Atmospheric environment (1994) |
container_volume | 166 |
creator | Cherrier, Gaël Belut, Emmanuel Gerardin, Fabien Tanière, Anne Rimbert, Nicolas |
description | Studying the scavenging of aerosol particle by drops has been a key topic of atmospheric science since the late seventies, given its relationships with atmospheric depollution, with the physics of clouds and precipitations and with global warming. However, the efficiency with which falling droplets capture aerosol particles is still imprecisely known for a wide range of drop Reynolds number, Weber numbers, aerosol particles inertia and Brownian Schmidt number. In this paper, microphysical modeling is used to compute precisely the drop collection efficiency for aerosol particles around the Greenfield gap which are submitted to both drag force and Brownian motion, for droplets falling in quiescent air at moderate Reynolds number (Red≤100). Depending on the impactional or diffusional parameters, the collection regions on the drop surface are highlighted. The results are then compressed by a correlation which extends the field of use of the theoretical model of Wang et al. (1978) by taking inertial capture into account. The proposed correlation is suitable to estimate the aerosol scavenging efficiency for a non-evaporating, non-deforming drop with Red≤100 and particle Stokes number Stp∈[0;+∞]. In case of evaporating or condensing droplets, the effect of thermophoresis and diffusiophoresis are also taken into account through an extension of the formulation proposed by Wang et al. (1978) and hence with similar accuracy.
•Microphysical modeling of aerosol scavenging by a drop.•Completing missing collection efficiency data in the Greenfield gap.•Highlighting preferential capture zone on the drop surface.•Proposing a correlation extending the Wang et al. (1978) collection kernel. |
doi_str_mv | 10.1016/j.atmosenv.2017.07.052 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01723320v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1352231017305010</els_id><sourcerecordid>oai_HAL_hal_01723320v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-945cea101d36235681aadc7502ddf9815c39ce10089a106413850f0c3467e5643</originalsourceid><addsrcrecordid>eNqFUE1LAzEUXETBWv0LkquHXV-SzX54shRthYoXxWOIyds2Jd1dkmWh_94sVa_CwBseMwMzSXJLIaNAi_t9poZDF7AdMwa0zCBCsLNkRquSp6zK8_PIuWAp4xQuk6sQ9gDAy7qcJZ8L9F3oHOmVH6x2GEjQasR2a9st-ToSRYzveofDA3m1OtLdMVitHDl0Bt0ksi0ZdkhWHrFtLDpDtqq_Ti4a5QLe_Nx58vH89L5cp5u31ctysUk1z4shrXOhUcUahheMi6KiShldCmDGNHVFhea1RgpQ1VFV5JRXAhqYzCWKIufz5O6Uu1NO9t4elD_KTlm5Xmzk9IuLMM4ZjDRqi5M21gjBY_NnoCCnKeVe_k4ppyklRAgWjY8nI8Ymo0Uvg7bYajTWox6k6ex_Ed-rUn-2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap</title><source>Elsevier ScienceDirect Journals</source><creator>Cherrier, Gaël ; Belut, Emmanuel ; Gerardin, Fabien ; Tanière, Anne ; Rimbert, Nicolas</creator><creatorcontrib>Cherrier, Gaël ; Belut, Emmanuel ; Gerardin, Fabien ; Tanière, Anne ; Rimbert, Nicolas</creatorcontrib><description>Studying the scavenging of aerosol particle by drops has been a key topic of atmospheric science since the late seventies, given its relationships with atmospheric depollution, with the physics of clouds and precipitations and with global warming. However, the efficiency with which falling droplets capture aerosol particles is still imprecisely known for a wide range of drop Reynolds number, Weber numbers, aerosol particles inertia and Brownian Schmidt number. In this paper, microphysical modeling is used to compute precisely the drop collection efficiency for aerosol particles around the Greenfield gap which are submitted to both drag force and Brownian motion, for droplets falling in quiescent air at moderate Reynolds number (Red≤100). Depending on the impactional or diffusional parameters, the collection regions on the drop surface are highlighted. The results are then compressed by a correlation which extends the field of use of the theoretical model of Wang et al. (1978) by taking inertial capture into account. The proposed correlation is suitable to estimate the aerosol scavenging efficiency for a non-evaporating, non-deforming drop with Red≤100 and particle Stokes number Stp∈[0;+∞]. In case of evaporating or condensing droplets, the effect of thermophoresis and diffusiophoresis are also taken into account through an extension of the formulation proposed by Wang et al. (1978) and hence with similar accuracy.
•Microphysical modeling of aerosol scavenging by a drop.•Completing missing collection efficiency data in the Greenfield gap.•Highlighting preferential capture zone on the drop surface.•Proposing a correlation extending the Wang et al. (1978) collection kernel.</description><identifier>ISSN: 1352-2310</identifier><identifier>EISSN: 1873-2844</identifier><identifier>DOI: 10.1016/j.atmosenv.2017.07.052</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aerosol particles ; Collection kernel ; Droplet ; Engineering Sciences ; Fluids mechanics ; Mechanics ; Reactive fluid environment ; Scavenging ; Thermics</subject><ispartof>Atmospheric environment (1994), 2017-10, Vol.166, p.519-530</ispartof><rights>2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-945cea101d36235681aadc7502ddf9815c39ce10089a106413850f0c3467e5643</citedby><cites>FETCH-LOGICAL-c346t-945cea101d36235681aadc7502ddf9815c39ce10089a106413850f0c3467e5643</cites><orcidid>0000-0002-7298-7751 ; 0000-0001-8067-0327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1352231017305010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01723320$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cherrier, Gaël</creatorcontrib><creatorcontrib>Belut, Emmanuel</creatorcontrib><creatorcontrib>Gerardin, Fabien</creatorcontrib><creatorcontrib>Tanière, Anne</creatorcontrib><creatorcontrib>Rimbert, Nicolas</creatorcontrib><title>Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap</title><title>Atmospheric environment (1994)</title><description>Studying the scavenging of aerosol particle by drops has been a key topic of atmospheric science since the late seventies, given its relationships with atmospheric depollution, with the physics of clouds and precipitations and with global warming. However, the efficiency with which falling droplets capture aerosol particles is still imprecisely known for a wide range of drop Reynolds number, Weber numbers, aerosol particles inertia and Brownian Schmidt number. In this paper, microphysical modeling is used to compute precisely the drop collection efficiency for aerosol particles around the Greenfield gap which are submitted to both drag force and Brownian motion, for droplets falling in quiescent air at moderate Reynolds number (Red≤100). Depending on the impactional or diffusional parameters, the collection regions on the drop surface are highlighted. The results are then compressed by a correlation which extends the field of use of the theoretical model of Wang et al. (1978) by taking inertial capture into account. The proposed correlation is suitable to estimate the aerosol scavenging efficiency for a non-evaporating, non-deforming drop with Red≤100 and particle Stokes number Stp∈[0;+∞]. In case of evaporating or condensing droplets, the effect of thermophoresis and diffusiophoresis are also taken into account through an extension of the formulation proposed by Wang et al. (1978) and hence with similar accuracy.
•Microphysical modeling of aerosol scavenging by a drop.•Completing missing collection efficiency data in the Greenfield gap.•Highlighting preferential capture zone on the drop surface.•Proposing a correlation extending the Wang et al. (1978) collection kernel.</description><subject>Aerosol particles</subject><subject>Collection kernel</subject><subject>Droplet</subject><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Mechanics</subject><subject>Reactive fluid environment</subject><subject>Scavenging</subject><subject>Thermics</subject><issn>1352-2310</issn><issn>1873-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUXETBWv0LkquHXV-SzX54shRthYoXxWOIyds2Jd1dkmWh_94sVa_CwBseMwMzSXJLIaNAi_t9poZDF7AdMwa0zCBCsLNkRquSp6zK8_PIuWAp4xQuk6sQ9gDAy7qcJZ8L9F3oHOmVH6x2GEjQasR2a9st-ToSRYzveofDA3m1OtLdMVitHDl0Bt0ksi0ZdkhWHrFtLDpDtqq_Ti4a5QLe_Nx58vH89L5cp5u31ctysUk1z4shrXOhUcUahheMi6KiShldCmDGNHVFhea1RgpQ1VFV5JRXAhqYzCWKIufz5O6Uu1NO9t4elD_KTlm5Xmzk9IuLMM4ZjDRqi5M21gjBY_NnoCCnKeVe_k4ppyklRAgWjY8nI8Ymo0Uvg7bYajTWox6k6ex_Ed-rUn-2</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Cherrier, Gaël</creator><creator>Belut, Emmanuel</creator><creator>Gerardin, Fabien</creator><creator>Tanière, Anne</creator><creator>Rimbert, Nicolas</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7298-7751</orcidid><orcidid>https://orcid.org/0000-0001-8067-0327</orcidid></search><sort><creationdate>20171001</creationdate><title>Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap</title><author>Cherrier, Gaël ; Belut, Emmanuel ; Gerardin, Fabien ; Tanière, Anne ; Rimbert, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-945cea101d36235681aadc7502ddf9815c39ce10089a106413850f0c3467e5643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerosol particles</topic><topic>Collection kernel</topic><topic>Droplet</topic><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Mechanics</topic><topic>Reactive fluid environment</topic><topic>Scavenging</topic><topic>Thermics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherrier, Gaël</creatorcontrib><creatorcontrib>Belut, Emmanuel</creatorcontrib><creatorcontrib>Gerardin, Fabien</creatorcontrib><creatorcontrib>Tanière, Anne</creatorcontrib><creatorcontrib>Rimbert, Nicolas</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Atmospheric environment (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherrier, Gaël</au><au>Belut, Emmanuel</au><au>Gerardin, Fabien</au><au>Tanière, Anne</au><au>Rimbert, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap</atitle><jtitle>Atmospheric environment (1994)</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>166</volume><spage>519</spage><epage>530</epage><pages>519-530</pages><issn>1352-2310</issn><eissn>1873-2844</eissn><abstract>Studying the scavenging of aerosol particle by drops has been a key topic of atmospheric science since the late seventies, given its relationships with atmospheric depollution, with the physics of clouds and precipitations and with global warming. However, the efficiency with which falling droplets capture aerosol particles is still imprecisely known for a wide range of drop Reynolds number, Weber numbers, aerosol particles inertia and Brownian Schmidt number. In this paper, microphysical modeling is used to compute precisely the drop collection efficiency for aerosol particles around the Greenfield gap which are submitted to both drag force and Brownian motion, for droplets falling in quiescent air at moderate Reynolds number (Red≤100). Depending on the impactional or diffusional parameters, the collection regions on the drop surface are highlighted. The results are then compressed by a correlation which extends the field of use of the theoretical model of Wang et al. (1978) by taking inertial capture into account. The proposed correlation is suitable to estimate the aerosol scavenging efficiency for a non-evaporating, non-deforming drop with Red≤100 and particle Stokes number Stp∈[0;+∞]. In case of evaporating or condensing droplets, the effect of thermophoresis and diffusiophoresis are also taken into account through an extension of the formulation proposed by Wang et al. (1978) and hence with similar accuracy.
•Microphysical modeling of aerosol scavenging by a drop.•Completing missing collection efficiency data in the Greenfield gap.•Highlighting preferential capture zone on the drop surface.•Proposing a correlation extending the Wang et al. (1978) collection kernel.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.atmosenv.2017.07.052</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7298-7751</orcidid><orcidid>https://orcid.org/0000-0001-8067-0327</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1352-2310 |
ispartof | Atmospheric environment (1994), 2017-10, Vol.166, p.519-530 |
issn | 1352-2310 1873-2844 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01723320v1 |
source | Elsevier ScienceDirect Journals |
subjects | Aerosol particles Collection kernel Droplet Engineering Sciences Fluids mechanics Mechanics Reactive fluid environment Scavenging Thermics |
title | Aerosol particles scavenging by a droplet: Microphysical modeling in the Greenfield gap |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerosol%20particles%20scavenging%20by%20a%20droplet:%20Microphysical%20modeling%20in%20the%20Greenfield%20gap&rft.jtitle=Atmospheric%20environment%20(1994)&rft.au=Cherrier,%20Ga%C3%ABl&rft.date=2017-10-01&rft.volume=166&rft.spage=519&rft.epage=530&rft.pages=519-530&rft.issn=1352-2310&rft.eissn=1873-2844&rft_id=info:doi/10.1016/j.atmosenv.2017.07.052&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01723320v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1352231017305010&rfr_iscdi=true |