Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application

This work presents an experimental investigation of a hydrofoil in reversed flow configuration in the context of marine current turbine development. Experiments consist in hydrodynamic force measurements and PIV flow observations on a NACA 0015 hydrofoil, at 5×105 Reynolds number. The hydrofoil in r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mechanics, B, Fluids B, Fluids, 2017-05, Vol.63, p.90-99
Hauptverfasser: Marchand, Jean-Baptiste, Astolfi, Jacques André, Bot, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue
container_start_page 90
container_title European journal of mechanics, B, Fluids
container_volume 63
creator Marchand, Jean-Baptiste
Astolfi, Jacques André
Bot, Patrick
description This work presents an experimental investigation of a hydrofoil in reversed flow configuration in the context of marine current turbine development. Experiments consist in hydrodynamic force measurements and PIV flow observations on a NACA 0015 hydrofoil, at 5×105 Reynolds number. The hydrofoil in reversed flow produces a higher lift than in the classical forward flow for very low angles of attack and proved to be relatively efficient for an angle of attack lower than 10°, despite a much higher drag than the same foil in direct flow. Moreover, the lift coefficient shows a discontinuity with an hysteresis effect when the angle of attack is varied up and down around zero-degree. It is shown that the sharp leading edge generates an early Leading Edge Separation Bubble on one side (suction side) even for vanishing angles of attack. This separation bubble triggers the transition to turbulence of the boundary layer on the suction side while the pressure side boundary layer remains laminar. As a consequence, separation on the rounded trailing edge occurs farther downstream on the (turbulent) suction side compared to the (laminar) pressure side. The Leading Edge Separation Bubble and the inherent up–down asymmetry in the boundary layer regime are responsible for the lift singularity. [Display omitted] •Measurement of forces on a NACA0015 hydrofoil in reverse flow : sharp leading edge, rounded trailing edge.•Strong discontinuity of lift with hysteresis is observed around 0°angle of attack.•Leading edge separation on suction side triggers transition.•Turbulent suction side boundary layer separates farther on rounded trailing edge than on laminar pressure side.
doi_str_mv 10.1016/j.euromechflu.2017.01.016
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01721041v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997754616306306</els_id><sourcerecordid>oai_HAL_hal_01721041v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-5caa79583ab431e3ce6b2d249afee31b65ea4e638c916d2dda86c939b35a4a3d3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKv_IR497JpsstnNsdRPKHhQzyGbTGhKuinJbqX_3i0V8SgMDAzv88I8CN1SUlJCxf2mhDHFLZi1C2NZEdqUhE4jztCMtg0rGibJOZoRKZuiqbm4RFc5bwghvGJiht4ffDaxH3w_-uGAo8PBuwHHHmu8PtgUXfQB-x4n2EPKYLEL8Qu7mPDgrQ54GFPne8B6twve6MHH_hpdOB0y3PzsOfp8evxYvhSrt-fX5WJVGE7EUNRG60bWLdMdZxSYAdFVtuJSOwBGO1GD5iBYayQVtrJWt8JIJjtWa66ZZXN0d-pd66B2yW91OqiovXpZrNTxNtmoKOF0T6esPGVNijkncL8AJepoUm3UH5PqaHLipxETuzyxMD2z95BUNh56A9YnMIOy0f-j5RtlZYQY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application</title><source>Access via ScienceDirect (Elsevier)</source><creator>Marchand, Jean-Baptiste ; Astolfi, Jacques André ; Bot, Patrick</creator><creatorcontrib>Marchand, Jean-Baptiste ; Astolfi, Jacques André ; Bot, Patrick</creatorcontrib><description>This work presents an experimental investigation of a hydrofoil in reversed flow configuration in the context of marine current turbine development. Experiments consist in hydrodynamic force measurements and PIV flow observations on a NACA 0015 hydrofoil, at 5×105 Reynolds number. The hydrofoil in reversed flow produces a higher lift than in the classical forward flow for very low angles of attack and proved to be relatively efficient for an angle of attack lower than 10°, despite a much higher drag than the same foil in direct flow. Moreover, the lift coefficient shows a discontinuity with an hysteresis effect when the angle of attack is varied up and down around zero-degree. It is shown that the sharp leading edge generates an early Leading Edge Separation Bubble on one side (suction side) even for vanishing angles of attack. This separation bubble triggers the transition to turbulence of the boundary layer on the suction side while the pressure side boundary layer remains laminar. As a consequence, separation on the rounded trailing edge occurs farther downstream on the (turbulent) suction side compared to the (laminar) pressure side. The Leading Edge Separation Bubble and the inherent up–down asymmetry in the boundary layer regime are responsible for the lift singularity. [Display omitted] •Measurement of forces on a NACA0015 hydrofoil in reverse flow : sharp leading edge, rounded trailing edge.•Strong discontinuity of lift with hysteresis is observed around 0°angle of attack.•Leading edge separation on suction side triggers transition.•Turbulent suction side boundary layer separates farther on rounded trailing edge than on laminar pressure side.</description><identifier>ISSN: 0997-7546</identifier><identifier>EISSN: 1873-7390</identifier><identifier>DOI: 10.1016/j.euromechflu.2017.01.016</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Engineering Sciences ; Fluids mechanics ; Hydrofoil ; Leading edge separation bubble ; Mechanics ; Reversed flow ; Sharp leading edge ; Tidal turbine ; Transition</subject><ispartof>European journal of mechanics, B, Fluids, 2017-05, Vol.63, p.90-99</ispartof><rights>2017 Elsevier Masson SAS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-5caa79583ab431e3ce6b2d249afee31b65ea4e638c916d2dda86c939b35a4a3d3</citedby><cites>FETCH-LOGICAL-c406t-5caa79583ab431e3ce6b2d249afee31b65ea4e638c916d2dda86c939b35a4a3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.euromechflu.2017.01.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01721041$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marchand, Jean-Baptiste</creatorcontrib><creatorcontrib>Astolfi, Jacques André</creatorcontrib><creatorcontrib>Bot, Patrick</creatorcontrib><title>Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application</title><title>European journal of mechanics, B, Fluids</title><description>This work presents an experimental investigation of a hydrofoil in reversed flow configuration in the context of marine current turbine development. Experiments consist in hydrodynamic force measurements and PIV flow observations on a NACA 0015 hydrofoil, at 5×105 Reynolds number. The hydrofoil in reversed flow produces a higher lift than in the classical forward flow for very low angles of attack and proved to be relatively efficient for an angle of attack lower than 10°, despite a much higher drag than the same foil in direct flow. Moreover, the lift coefficient shows a discontinuity with an hysteresis effect when the angle of attack is varied up and down around zero-degree. It is shown that the sharp leading edge generates an early Leading Edge Separation Bubble on one side (suction side) even for vanishing angles of attack. This separation bubble triggers the transition to turbulence of the boundary layer on the suction side while the pressure side boundary layer remains laminar. As a consequence, separation on the rounded trailing edge occurs farther downstream on the (turbulent) suction side compared to the (laminar) pressure side. The Leading Edge Separation Bubble and the inherent up–down asymmetry in the boundary layer regime are responsible for the lift singularity. [Display omitted] •Measurement of forces on a NACA0015 hydrofoil in reverse flow : sharp leading edge, rounded trailing edge.•Strong discontinuity of lift with hysteresis is observed around 0°angle of attack.•Leading edge separation on suction side triggers transition.•Turbulent suction side boundary layer separates farther on rounded trailing edge than on laminar pressure side.</description><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Hydrofoil</subject><subject>Leading edge separation bubble</subject><subject>Mechanics</subject><subject>Reversed flow</subject><subject>Sharp leading edge</subject><subject>Tidal turbine</subject><subject>Transition</subject><issn>0997-7546</issn><issn>1873-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKv_IR497JpsstnNsdRPKHhQzyGbTGhKuinJbqX_3i0V8SgMDAzv88I8CN1SUlJCxf2mhDHFLZi1C2NZEdqUhE4jztCMtg0rGibJOZoRKZuiqbm4RFc5bwghvGJiht4ffDaxH3w_-uGAo8PBuwHHHmu8PtgUXfQB-x4n2EPKYLEL8Qu7mPDgrQ54GFPne8B6twve6MHH_hpdOB0y3PzsOfp8evxYvhSrt-fX5WJVGE7EUNRG60bWLdMdZxSYAdFVtuJSOwBGO1GD5iBYayQVtrJWt8JIJjtWa66ZZXN0d-pd66B2yW91OqiovXpZrNTxNtmoKOF0T6esPGVNijkncL8AJepoUm3UH5PqaHLipxETuzyxMD2z95BUNh56A9YnMIOy0f-j5RtlZYQY</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Marchand, Jean-Baptiste</creator><creator>Astolfi, Jacques André</creator><creator>Bot, Patrick</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20170501</creationdate><title>Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application</title><author>Marchand, Jean-Baptiste ; Astolfi, Jacques André ; Bot, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-5caa79583ab431e3ce6b2d249afee31b65ea4e638c916d2dda86c939b35a4a3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Hydrofoil</topic><topic>Leading edge separation bubble</topic><topic>Mechanics</topic><topic>Reversed flow</topic><topic>Sharp leading edge</topic><topic>Tidal turbine</topic><topic>Transition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchand, Jean-Baptiste</creatorcontrib><creatorcontrib>Astolfi, Jacques André</creatorcontrib><creatorcontrib>Bot, Patrick</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of mechanics, B, Fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchand, Jean-Baptiste</au><au>Astolfi, Jacques André</au><au>Bot, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application</atitle><jtitle>European journal of mechanics, B, Fluids</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>63</volume><spage>90</spage><epage>99</epage><pages>90-99</pages><issn>0997-7546</issn><eissn>1873-7390</eissn><abstract>This work presents an experimental investigation of a hydrofoil in reversed flow configuration in the context of marine current turbine development. Experiments consist in hydrodynamic force measurements and PIV flow observations on a NACA 0015 hydrofoil, at 5×105 Reynolds number. The hydrofoil in reversed flow produces a higher lift than in the classical forward flow for very low angles of attack and proved to be relatively efficient for an angle of attack lower than 10°, despite a much higher drag than the same foil in direct flow. Moreover, the lift coefficient shows a discontinuity with an hysteresis effect when the angle of attack is varied up and down around zero-degree. It is shown that the sharp leading edge generates an early Leading Edge Separation Bubble on one side (suction side) even for vanishing angles of attack. This separation bubble triggers the transition to turbulence of the boundary layer on the suction side while the pressure side boundary layer remains laminar. As a consequence, separation on the rounded trailing edge occurs farther downstream on the (turbulent) suction side compared to the (laminar) pressure side. The Leading Edge Separation Bubble and the inherent up–down asymmetry in the boundary layer regime are responsible for the lift singularity. [Display omitted] •Measurement of forces on a NACA0015 hydrofoil in reverse flow : sharp leading edge, rounded trailing edge.•Strong discontinuity of lift with hysteresis is observed around 0°angle of attack.•Leading edge separation on suction side triggers transition.•Turbulent suction side boundary layer separates farther on rounded trailing edge than on laminar pressure side.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechflu.2017.01.016</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0997-7546
ispartof European journal of mechanics, B, Fluids, 2017-05, Vol.63, p.90-99
issn 0997-7546
1873-7390
language eng
recordid cdi_hal_primary_oai_HAL_hal_01721041v1
source Access via ScienceDirect (Elsevier)
subjects Engineering Sciences
Fluids mechanics
Hydrofoil
Leading edge separation bubble
Mechanics
Reversed flow
Sharp leading edge
Tidal turbine
Transition
title Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T20%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuity%20of%20lift%20on%20a%20hydrofoil%20in%20reversed%20flow%20for%20tidal%20turbine%20application&rft.jtitle=European%20journal%20of%20mechanics,%20B,%20Fluids&rft.au=Marchand,%20Jean-Baptiste&rft.date=2017-05-01&rft.volume=63&rft.spage=90&rft.epage=99&rft.pages=90-99&rft.issn=0997-7546&rft.eissn=1873-7390&rft_id=info:doi/10.1016/j.euromechflu.2017.01.016&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01721041v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0997754616306306&rfr_iscdi=true