Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application
This work presents an experimental investigation of a hydrofoil in reversed flow configuration in the context of marine current turbine development. Experiments consist in hydrodynamic force measurements and PIV flow observations on a NACA 0015 hydrofoil, at 5×105 Reynolds number. The hydrofoil in r...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, B, Fluids B, Fluids, 2017-05, Vol.63, p.90-99 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 99 |
---|---|
container_issue | |
container_start_page | 90 |
container_title | European journal of mechanics, B, Fluids |
container_volume | 63 |
creator | Marchand, Jean-Baptiste Astolfi, Jacques André Bot, Patrick |
description | This work presents an experimental investigation of a hydrofoil in reversed flow configuration in the context of marine current turbine development. Experiments consist in hydrodynamic force measurements and PIV flow observations on a NACA 0015 hydrofoil, at 5×105 Reynolds number. The hydrofoil in reversed flow produces a higher lift than in the classical forward flow for very low angles of attack and proved to be relatively efficient for an angle of attack lower than 10°, despite a much higher drag than the same foil in direct flow. Moreover, the lift coefficient shows a discontinuity with an hysteresis effect when the angle of attack is varied up and down around zero-degree. It is shown that the sharp leading edge generates an early Leading Edge Separation Bubble on one side (suction side) even for vanishing angles of attack. This separation bubble triggers the transition to turbulence of the boundary layer on the suction side while the pressure side boundary layer remains laminar. As a consequence, separation on the rounded trailing edge occurs farther downstream on the (turbulent) suction side compared to the (laminar) pressure side. The Leading Edge Separation Bubble and the inherent up–down asymmetry in the boundary layer regime are responsible for the lift singularity.
[Display omitted]
•Measurement of forces on a NACA0015 hydrofoil in reverse flow : sharp leading edge, rounded trailing edge.•Strong discontinuity of lift with hysteresis is observed around 0°angle of attack.•Leading edge separation on suction side triggers transition.•Turbulent suction side boundary layer separates farther on rounded trailing edge than on laminar pressure side. |
doi_str_mv | 10.1016/j.euromechflu.2017.01.016 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01721041v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997754616306306</els_id><sourcerecordid>oai_HAL_hal_01721041v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-5caa79583ab431e3ce6b2d249afee31b65ea4e638c916d2dda86c939b35a4a3d3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKv_IR497JpsstnNsdRPKHhQzyGbTGhKuinJbqX_3i0V8SgMDAzv88I8CN1SUlJCxf2mhDHFLZi1C2NZEdqUhE4jztCMtg0rGibJOZoRKZuiqbm4RFc5bwghvGJiht4ffDaxH3w_-uGAo8PBuwHHHmu8PtgUXfQB-x4n2EPKYLEL8Qu7mPDgrQ54GFPne8B6twve6MHH_hpdOB0y3PzsOfp8evxYvhSrt-fX5WJVGE7EUNRG60bWLdMdZxSYAdFVtuJSOwBGO1GD5iBYayQVtrJWt8JIJjtWa66ZZXN0d-pd66B2yW91OqiovXpZrNTxNtmoKOF0T6esPGVNijkncL8AJepoUm3UH5PqaHLipxETuzyxMD2z95BUNh56A9YnMIOy0f-j5RtlZYQY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application</title><source>Access via ScienceDirect (Elsevier)</source><creator>Marchand, Jean-Baptiste ; Astolfi, Jacques André ; Bot, Patrick</creator><creatorcontrib>Marchand, Jean-Baptiste ; Astolfi, Jacques André ; Bot, Patrick</creatorcontrib><description>This work presents an experimental investigation of a hydrofoil in reversed flow configuration in the context of marine current turbine development. Experiments consist in hydrodynamic force measurements and PIV flow observations on a NACA 0015 hydrofoil, at 5×105 Reynolds number. The hydrofoil in reversed flow produces a higher lift than in the classical forward flow for very low angles of attack and proved to be relatively efficient for an angle of attack lower than 10°, despite a much higher drag than the same foil in direct flow. Moreover, the lift coefficient shows a discontinuity with an hysteresis effect when the angle of attack is varied up and down around zero-degree. It is shown that the sharp leading edge generates an early Leading Edge Separation Bubble on one side (suction side) even for vanishing angles of attack. This separation bubble triggers the transition to turbulence of the boundary layer on the suction side while the pressure side boundary layer remains laminar. As a consequence, separation on the rounded trailing edge occurs farther downstream on the (turbulent) suction side compared to the (laminar) pressure side. The Leading Edge Separation Bubble and the inherent up–down asymmetry in the boundary layer regime are responsible for the lift singularity.
[Display omitted]
•Measurement of forces on a NACA0015 hydrofoil in reverse flow : sharp leading edge, rounded trailing edge.•Strong discontinuity of lift with hysteresis is observed around 0°angle of attack.•Leading edge separation on suction side triggers transition.•Turbulent suction side boundary layer separates farther on rounded trailing edge than on laminar pressure side.</description><identifier>ISSN: 0997-7546</identifier><identifier>EISSN: 1873-7390</identifier><identifier>DOI: 10.1016/j.euromechflu.2017.01.016</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Engineering Sciences ; Fluids mechanics ; Hydrofoil ; Leading edge separation bubble ; Mechanics ; Reversed flow ; Sharp leading edge ; Tidal turbine ; Transition</subject><ispartof>European journal of mechanics, B, Fluids, 2017-05, Vol.63, p.90-99</ispartof><rights>2017 Elsevier Masson SAS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-5caa79583ab431e3ce6b2d249afee31b65ea4e638c916d2dda86c939b35a4a3d3</citedby><cites>FETCH-LOGICAL-c406t-5caa79583ab431e3ce6b2d249afee31b65ea4e638c916d2dda86c939b35a4a3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.euromechflu.2017.01.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01721041$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Marchand, Jean-Baptiste</creatorcontrib><creatorcontrib>Astolfi, Jacques André</creatorcontrib><creatorcontrib>Bot, Patrick</creatorcontrib><title>Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application</title><title>European journal of mechanics, B, Fluids</title><description>This work presents an experimental investigation of a hydrofoil in reversed flow configuration in the context of marine current turbine development. Experiments consist in hydrodynamic force measurements and PIV flow observations on a NACA 0015 hydrofoil, at 5×105 Reynolds number. The hydrofoil in reversed flow produces a higher lift than in the classical forward flow for very low angles of attack and proved to be relatively efficient for an angle of attack lower than 10°, despite a much higher drag than the same foil in direct flow. Moreover, the lift coefficient shows a discontinuity with an hysteresis effect when the angle of attack is varied up and down around zero-degree. It is shown that the sharp leading edge generates an early Leading Edge Separation Bubble on one side (suction side) even for vanishing angles of attack. This separation bubble triggers the transition to turbulence of the boundary layer on the suction side while the pressure side boundary layer remains laminar. As a consequence, separation on the rounded trailing edge occurs farther downstream on the (turbulent) suction side compared to the (laminar) pressure side. The Leading Edge Separation Bubble and the inherent up–down asymmetry in the boundary layer regime are responsible for the lift singularity.
[Display omitted]
•Measurement of forces on a NACA0015 hydrofoil in reverse flow : sharp leading edge, rounded trailing edge.•Strong discontinuity of lift with hysteresis is observed around 0°angle of attack.•Leading edge separation on suction side triggers transition.•Turbulent suction side boundary layer separates farther on rounded trailing edge than on laminar pressure side.</description><subject>Engineering Sciences</subject><subject>Fluids mechanics</subject><subject>Hydrofoil</subject><subject>Leading edge separation bubble</subject><subject>Mechanics</subject><subject>Reversed flow</subject><subject>Sharp leading edge</subject><subject>Tidal turbine</subject><subject>Transition</subject><issn>0997-7546</issn><issn>1873-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKv_IR497JpsstnNsdRPKHhQzyGbTGhKuinJbqX_3i0V8SgMDAzv88I8CN1SUlJCxf2mhDHFLZi1C2NZEdqUhE4jztCMtg0rGibJOZoRKZuiqbm4RFc5bwghvGJiht4ffDaxH3w_-uGAo8PBuwHHHmu8PtgUXfQB-x4n2EPKYLEL8Qu7mPDgrQ54GFPne8B6twve6MHH_hpdOB0y3PzsOfp8evxYvhSrt-fX5WJVGE7EUNRG60bWLdMdZxSYAdFVtuJSOwBGO1GD5iBYayQVtrJWt8JIJjtWa66ZZXN0d-pd66B2yW91OqiovXpZrNTxNtmoKOF0T6esPGVNijkncL8AJepoUm3UH5PqaHLipxETuzyxMD2z95BUNh56A9YnMIOy0f-j5RtlZYQY</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Marchand, Jean-Baptiste</creator><creator>Astolfi, Jacques André</creator><creator>Bot, Patrick</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20170501</creationdate><title>Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application</title><author>Marchand, Jean-Baptiste ; Astolfi, Jacques André ; Bot, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-5caa79583ab431e3ce6b2d249afee31b65ea4e638c916d2dda86c939b35a4a3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Engineering Sciences</topic><topic>Fluids mechanics</topic><topic>Hydrofoil</topic><topic>Leading edge separation bubble</topic><topic>Mechanics</topic><topic>Reversed flow</topic><topic>Sharp leading edge</topic><topic>Tidal turbine</topic><topic>Transition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchand, Jean-Baptiste</creatorcontrib><creatorcontrib>Astolfi, Jacques André</creatorcontrib><creatorcontrib>Bot, Patrick</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>European journal of mechanics, B, Fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchand, Jean-Baptiste</au><au>Astolfi, Jacques André</au><au>Bot, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application</atitle><jtitle>European journal of mechanics, B, Fluids</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>63</volume><spage>90</spage><epage>99</epage><pages>90-99</pages><issn>0997-7546</issn><eissn>1873-7390</eissn><abstract>This work presents an experimental investigation of a hydrofoil in reversed flow configuration in the context of marine current turbine development. Experiments consist in hydrodynamic force measurements and PIV flow observations on a NACA 0015 hydrofoil, at 5×105 Reynolds number. The hydrofoil in reversed flow produces a higher lift than in the classical forward flow for very low angles of attack and proved to be relatively efficient for an angle of attack lower than 10°, despite a much higher drag than the same foil in direct flow. Moreover, the lift coefficient shows a discontinuity with an hysteresis effect when the angle of attack is varied up and down around zero-degree. It is shown that the sharp leading edge generates an early Leading Edge Separation Bubble on one side (suction side) even for vanishing angles of attack. This separation bubble triggers the transition to turbulence of the boundary layer on the suction side while the pressure side boundary layer remains laminar. As a consequence, separation on the rounded trailing edge occurs farther downstream on the (turbulent) suction side compared to the (laminar) pressure side. The Leading Edge Separation Bubble and the inherent up–down asymmetry in the boundary layer regime are responsible for the lift singularity.
[Display omitted]
•Measurement of forces on a NACA0015 hydrofoil in reverse flow : sharp leading edge, rounded trailing edge.•Strong discontinuity of lift with hysteresis is observed around 0°angle of attack.•Leading edge separation on suction side triggers transition.•Turbulent suction side boundary layer separates farther on rounded trailing edge than on laminar pressure side.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechflu.2017.01.016</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0997-7546 |
ispartof | European journal of mechanics, B, Fluids, 2017-05, Vol.63, p.90-99 |
issn | 0997-7546 1873-7390 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01721041v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Engineering Sciences Fluids mechanics Hydrofoil Leading edge separation bubble Mechanics Reversed flow Sharp leading edge Tidal turbine Transition |
title | Discontinuity of lift on a hydrofoil in reversed flow for tidal turbine application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T20%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuity%20of%20lift%20on%20a%20hydrofoil%20in%20reversed%20flow%20for%20tidal%20turbine%20application&rft.jtitle=European%20journal%20of%20mechanics,%20B,%20Fluids&rft.au=Marchand,%20Jean-Baptiste&rft.date=2017-05-01&rft.volume=63&rft.spage=90&rft.epage=99&rft.pages=90-99&rft.issn=0997-7546&rft.eissn=1873-7390&rft_id=info:doi/10.1016/j.euromechflu.2017.01.016&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01721041v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0997754616306306&rfr_iscdi=true |