Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes

In vivo lipid membranes interact with rough supramolecular structures such as protein clusters and fibrils. How these features whose size ranges from a few nanometers to a few tens of nanometers impact lipid and protein mobility is still being investigated. Here, we study supported phospholipid bila...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-03, Vol.33 (9), p.2444-2453
Hauptverfasser: Blachon, Florence, Harb, Frédéric, Munteanu, Bogdan, Piednoir, Agnès, Fulcrand, Rémy, Charitat, Thierry, Fragneto, Giovanna, Pierre-Louis, Olivier, Tinland, Bernard, Rieu, Jean-Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2453
container_issue 9
container_start_page 2444
container_title Langmuir
container_volume 33
creator Blachon, Florence
Harb, Frédéric
Munteanu, Bogdan
Piednoir, Agnès
Fulcrand, Rémy
Charitat, Thierry
Fragneto, Giovanna
Pierre-Louis, Olivier
Tinland, Bernard
Rieu, Jean-Paul
description In vivo lipid membranes interact with rough supramolecular structures such as protein clusters and fibrils. How these features whose size ranges from a few nanometers to a few tens of nanometers impact lipid and protein mobility is still being investigated. Here, we study supported phospholipid bilayers, a unique biomimetic model, deposited on etched surfaces bearing nanometric corrugations. The surface roughness and mean curvature are carefully characterized by AFM imaging using ultrasharp tips. Neutron specular reflectivity supplements this surface characterization and indicates that the bilayers follow the large-scale corrugations of the substrate. We measure the lateral mobility of lipids in both the fluid and gel phases by fluorescence recovery after patterned photobleaching. Although the mobility is independent of the roughness in the gel phase, it exhibits a 5-fold decrease in the fluid phase when the roughness increases from 0.2 to 10 nm. These results are interpreted with a two-phase model allowing for a strong decrease in the lipid mobility in highly curved or defect-induced gel-like nanoscale regions. This suggests a strong link between membrane curvature and fluidity, which is a key property for various cell functions such as signaling and adhesion.
doi_str_mv 10.1021/acs.langmuir.6b03276
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01720738v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1870648954</sourcerecordid><originalsourceid>FETCH-LOGICAL-a485t-467d1b8926b32a97ac9a6cc9c7804f1d8f0b8e554b775b6faef9660661c4a21a3</originalsourceid><addsrcrecordid>eNp9kE1PGzEURa2qCNLAP6iqWZbFhGePxx_LCEpBSmERWFu24wlGM-OpPVMp_x5HCVl29aSrc--TDkLfMSwwEHyjbVq0ut92k48LZqAinH1BM1wTKGtB-Fc0A06rklNWXaBvKb0DgKyoPEcXRBAsAcQM3T3pPsQwbd96l1KxHmPot-2ueOwGbcdUrPzgN8WfYHzrx13h-2I9DUOIo8up60zUuXeJzhrdJnd1vHP0ev_r5fahXD3_frxdrkpNRT2WlPENNkISZiqiJddWamattFwAbfBGNGCEq2tqOK8Na7RrJGPAGLZUE6yrObo-7L7pVg3RdzruVNBePSxXap8B5gR4Jf7hzP48sEMMfyeXRtX5ZF2blbkwJYUFB0aFrGlG6QG1MaQUXXPaxqD2rlV2rT5dq6PrXPtx_DCZzm1OpU-5GYADsK-_hyn2Wc7_Nz8AcPKNvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1870648954</pqid></control><display><type>article</type><title>Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Blachon, Florence ; Harb, Frédéric ; Munteanu, Bogdan ; Piednoir, Agnès ; Fulcrand, Rémy ; Charitat, Thierry ; Fragneto, Giovanna ; Pierre-Louis, Olivier ; Tinland, Bernard ; Rieu, Jean-Paul</creator><creatorcontrib>Blachon, Florence ; Harb, Frédéric ; Munteanu, Bogdan ; Piednoir, Agnès ; Fulcrand, Rémy ; Charitat, Thierry ; Fragneto, Giovanna ; Pierre-Louis, Olivier ; Tinland, Bernard ; Rieu, Jean-Paul</creatorcontrib><description>In vivo lipid membranes interact with rough supramolecular structures such as protein clusters and fibrils. How these features whose size ranges from a few nanometers to a few tens of nanometers impact lipid and protein mobility is still being investigated. Here, we study supported phospholipid bilayers, a unique biomimetic model, deposited on etched surfaces bearing nanometric corrugations. The surface roughness and mean curvature are carefully characterized by AFM imaging using ultrasharp tips. Neutron specular reflectivity supplements this surface characterization and indicates that the bilayers follow the large-scale corrugations of the substrate. We measure the lateral mobility of lipids in both the fluid and gel phases by fluorescence recovery after patterned photobleaching. Although the mobility is independent of the roughness in the gel phase, it exhibits a 5-fold decrease in the fluid phase when the roughness increases from 0.2 to 10 nm. These results are interpreted with a two-phase model allowing for a strong decrease in the lipid mobility in highly curved or defect-induced gel-like nanoscale regions. This suggests a strong link between membrane curvature and fluidity, which is a key property for various cell functions such as signaling and adhesion.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.6b03276</identifier><identifier>PMID: 28219008</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biological Physics ; Lipid Bilayers - chemistry ; Microscopy, Atomic Force ; Particle Size ; Phospholipids - chemistry ; Physics ; Surface Properties</subject><ispartof>Langmuir, 2017-03, Vol.33 (9), p.2444-2453</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a485t-467d1b8926b32a97ac9a6cc9c7804f1d8f0b8e554b775b6faef9660661c4a21a3</citedby><cites>FETCH-LOGICAL-a485t-467d1b8926b32a97ac9a6cc9c7804f1d8f0b8e554b775b6faef9660661c4a21a3</cites><orcidid>0000-0003-0528-8819 ; 0000-0003-3167-6495 ; 0000-0002-5409-3420 ; 0000-0003-4855-4822 ; 0000-0003-2792-5209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.6b03276$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.6b03276$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28219008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01720738$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Blachon, Florence</creatorcontrib><creatorcontrib>Harb, Frédéric</creatorcontrib><creatorcontrib>Munteanu, Bogdan</creatorcontrib><creatorcontrib>Piednoir, Agnès</creatorcontrib><creatorcontrib>Fulcrand, Rémy</creatorcontrib><creatorcontrib>Charitat, Thierry</creatorcontrib><creatorcontrib>Fragneto, Giovanna</creatorcontrib><creatorcontrib>Pierre-Louis, Olivier</creatorcontrib><creatorcontrib>Tinland, Bernard</creatorcontrib><creatorcontrib>Rieu, Jean-Paul</creatorcontrib><title>Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>In vivo lipid membranes interact with rough supramolecular structures such as protein clusters and fibrils. How these features whose size ranges from a few nanometers to a few tens of nanometers impact lipid and protein mobility is still being investigated. Here, we study supported phospholipid bilayers, a unique biomimetic model, deposited on etched surfaces bearing nanometric corrugations. The surface roughness and mean curvature are carefully characterized by AFM imaging using ultrasharp tips. Neutron specular reflectivity supplements this surface characterization and indicates that the bilayers follow the large-scale corrugations of the substrate. We measure the lateral mobility of lipids in both the fluid and gel phases by fluorescence recovery after patterned photobleaching. Although the mobility is independent of the roughness in the gel phase, it exhibits a 5-fold decrease in the fluid phase when the roughness increases from 0.2 to 10 nm. These results are interpreted with a two-phase model allowing for a strong decrease in the lipid mobility in highly curved or defect-induced gel-like nanoscale regions. This suggests a strong link between membrane curvature and fluidity, which is a key property for various cell functions such as signaling and adhesion.</description><subject>Biological Physics</subject><subject>Lipid Bilayers - chemistry</subject><subject>Microscopy, Atomic Force</subject><subject>Particle Size</subject><subject>Phospholipids - chemistry</subject><subject>Physics</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PGzEURa2qCNLAP6iqWZbFhGePxx_LCEpBSmERWFu24wlGM-OpPVMp_x5HCVl29aSrc--TDkLfMSwwEHyjbVq0ut92k48LZqAinH1BM1wTKGtB-Fc0A06rklNWXaBvKb0DgKyoPEcXRBAsAcQM3T3pPsQwbd96l1KxHmPot-2ueOwGbcdUrPzgN8WfYHzrx13h-2I9DUOIo8up60zUuXeJzhrdJnd1vHP0ev_r5fahXD3_frxdrkpNRT2WlPENNkISZiqiJddWamattFwAbfBGNGCEq2tqOK8Na7RrJGPAGLZUE6yrObo-7L7pVg3RdzruVNBePSxXap8B5gR4Jf7hzP48sEMMfyeXRtX5ZF2blbkwJYUFB0aFrGlG6QG1MaQUXXPaxqD2rlV2rT5dq6PrXPtx_DCZzm1OpU-5GYADsK-_hyn2Wc7_Nz8AcPKNvg</recordid><startdate>20170307</startdate><enddate>20170307</enddate><creator>Blachon, Florence</creator><creator>Harb, Frédéric</creator><creator>Munteanu, Bogdan</creator><creator>Piednoir, Agnès</creator><creator>Fulcrand, Rémy</creator><creator>Charitat, Thierry</creator><creator>Fragneto, Giovanna</creator><creator>Pierre-Louis, Olivier</creator><creator>Tinland, Bernard</creator><creator>Rieu, Jean-Paul</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0528-8819</orcidid><orcidid>https://orcid.org/0000-0003-3167-6495</orcidid><orcidid>https://orcid.org/0000-0002-5409-3420</orcidid><orcidid>https://orcid.org/0000-0003-4855-4822</orcidid><orcidid>https://orcid.org/0000-0003-2792-5209</orcidid></search><sort><creationdate>20170307</creationdate><title>Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes</title><author>Blachon, Florence ; Harb, Frédéric ; Munteanu, Bogdan ; Piednoir, Agnès ; Fulcrand, Rémy ; Charitat, Thierry ; Fragneto, Giovanna ; Pierre-Louis, Olivier ; Tinland, Bernard ; Rieu, Jean-Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a485t-467d1b8926b32a97ac9a6cc9c7804f1d8f0b8e554b775b6faef9660661c4a21a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological Physics</topic><topic>Lipid Bilayers - chemistry</topic><topic>Microscopy, Atomic Force</topic><topic>Particle Size</topic><topic>Phospholipids - chemistry</topic><topic>Physics</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blachon, Florence</creatorcontrib><creatorcontrib>Harb, Frédéric</creatorcontrib><creatorcontrib>Munteanu, Bogdan</creatorcontrib><creatorcontrib>Piednoir, Agnès</creatorcontrib><creatorcontrib>Fulcrand, Rémy</creatorcontrib><creatorcontrib>Charitat, Thierry</creatorcontrib><creatorcontrib>Fragneto, Giovanna</creatorcontrib><creatorcontrib>Pierre-Louis, Olivier</creatorcontrib><creatorcontrib>Tinland, Bernard</creatorcontrib><creatorcontrib>Rieu, Jean-Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blachon, Florence</au><au>Harb, Frédéric</au><au>Munteanu, Bogdan</au><au>Piednoir, Agnès</au><au>Fulcrand, Rémy</au><au>Charitat, Thierry</au><au>Fragneto, Giovanna</au><au>Pierre-Louis, Olivier</au><au>Tinland, Bernard</au><au>Rieu, Jean-Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-03-07</date><risdate>2017</risdate><volume>33</volume><issue>9</issue><spage>2444</spage><epage>2453</epage><pages>2444-2453</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>In vivo lipid membranes interact with rough supramolecular structures such as protein clusters and fibrils. How these features whose size ranges from a few nanometers to a few tens of nanometers impact lipid and protein mobility is still being investigated. Here, we study supported phospholipid bilayers, a unique biomimetic model, deposited on etched surfaces bearing nanometric corrugations. The surface roughness and mean curvature are carefully characterized by AFM imaging using ultrasharp tips. Neutron specular reflectivity supplements this surface characterization and indicates that the bilayers follow the large-scale corrugations of the substrate. We measure the lateral mobility of lipids in both the fluid and gel phases by fluorescence recovery after patterned photobleaching. Although the mobility is independent of the roughness in the gel phase, it exhibits a 5-fold decrease in the fluid phase when the roughness increases from 0.2 to 10 nm. These results are interpreted with a two-phase model allowing for a strong decrease in the lipid mobility in highly curved or defect-induced gel-like nanoscale regions. This suggests a strong link between membrane curvature and fluidity, which is a key property for various cell functions such as signaling and adhesion.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28219008</pmid><doi>10.1021/acs.langmuir.6b03276</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0528-8819</orcidid><orcidid>https://orcid.org/0000-0003-3167-6495</orcidid><orcidid>https://orcid.org/0000-0002-5409-3420</orcidid><orcidid>https://orcid.org/0000-0003-4855-4822</orcidid><orcidid>https://orcid.org/0000-0003-2792-5209</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2017-03, Vol.33 (9), p.2444-2453
issn 0743-7463
1520-5827
language eng
recordid cdi_hal_primary_oai_HAL_hal_01720738v1
source MEDLINE; American Chemical Society Journals
subjects Biological Physics
Lipid Bilayers - chemistry
Microscopy, Atomic Force
Particle Size
Phospholipids - chemistry
Physics
Surface Properties
title Nanoroughness Strongly Impacts Lipid Mobility in Supported Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoroughness%20Strongly%20Impacts%20Lipid%20Mobility%20in%20Supported%20Membranes&rft.jtitle=Langmuir&rft.au=Blachon,%20Florence&rft.date=2017-03-07&rft.volume=33&rft.issue=9&rft.spage=2444&rft.epage=2453&rft.pages=2444-2453&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.6b03276&rft_dat=%3Cproquest_hal_p%3E1870648954%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1870648954&rft_id=info:pmid/28219008&rfr_iscdi=true