A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys
A numerical analysis using cohesive zone model under cyclic loading is proposed to develop a coupled predictive approach of crack growth in single crystal. The process of material damage during fatigue crack growth is described using an irreversible cohesive zone model, which governs the separation...
Gespeichert in:
Veröffentlicht in: | International journal of fatigue 2009-05, Vol.31 (5), p.868-879 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 879 |
---|---|
container_issue | 5 |
container_start_page | 868 |
container_title | International journal of fatigue |
container_volume | 31 |
creator | Bouvard, J.L. Chaboche, J.L. Feyel, F. Gallerneau, F. |
description | A numerical analysis using cohesive zone model under cyclic loading is proposed to develop a coupled predictive approach of crack growth in single crystal. The process of material damage during fatigue crack growth is described using an irreversible cohesive zone model, which governs the separation of the crack flanks and eventually leads to the formation of free surfaces. The cohesive zone element is modeled to accumulate fatigue damage during loadings and no damage during unloadings. This paper presents the damage model and its application in the study of the crack growth for precracked specimens. The use of cohesive zone approach is validated through a convergence study. Then, a general procedure of parameters calibration is presented in pure fatigue crack growth. In the last section, an extension of the cohesive zone model is presented in the case of creep–fatigue regime at high temperature. The model showed its capability to predict with a good agreement the crack growth in the case of complex loading and complex specimen geometries. |
doi_str_mv | 10.1016/j.ijfatigue.2008.11.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01720464v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112308002521</els_id><sourcerecordid>33091745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-5a649d6ed11a9daa899c4cb71146160e00d55357944dd3aebb3db3b3cf8dd0f33</originalsourceid><addsrcrecordid>eNqFkMGO0zAURS0EEmWYbxhvQGKR8F7sJPWyGgGDVIkNrI1jv7QublzstKizmn_gD_kSUrV0y-pJV-fdKx3G7hBKBGzeb0q_6c3oV3sqK4B5iVgCVM_YDOetKoSsq-dsBiirArESL9mrnDcAoKCtZ-z7gtu4puwPxB_jQHwbHQXex8QvpdwMjttEtPvz9PtfZpOxP_gqxV_jmvuBZz-swik-5tEEnvc7SiaEeMyv2YvehEy3l3vDvn388PX-oVh--fT5frEsrEQYi9o0UrmGHKJRzpi5UlbarkWUDTZAAK6uRd0qKZ0ThrpOuE50wvZz56AX4oa9O_euTdC75LcmHXU0Xj8slvqUAbYVyEYecGLfntldij_3lEe99dlSCGaguM9aCFDYynoC2zNoU8w5UX9tRtAn-3qjr_b1yb5G1JP96fPNZcJka0KfzGB9vr5XWKl6Gpi4xZmjyc3BU9LZehosOZ_IjtpF_9-tv6_2oMI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33091745</pqid></control><display><type>article</type><title>A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bouvard, J.L. ; Chaboche, J.L. ; Feyel, F. ; Gallerneau, F.</creator><creatorcontrib>Bouvard, J.L. ; Chaboche, J.L. ; Feyel, F. ; Gallerneau, F.</creatorcontrib><description>A numerical analysis using cohesive zone model under cyclic loading is proposed to develop a coupled predictive approach of crack growth in single crystal. The process of material damage during fatigue crack growth is described using an irreversible cohesive zone model, which governs the separation of the crack flanks and eventually leads to the formation of free surfaces. The cohesive zone element is modeled to accumulate fatigue damage during loadings and no damage during unloadings. This paper presents the damage model and its application in the study of the crack growth for precracked specimens. The use of cohesive zone approach is validated through a convergence study. Then, a general procedure of parameters calibration is presented in pure fatigue crack growth. In the last section, an extension of the cohesive zone model is presented in the case of creep–fatigue regime at high temperature. The model showed its capability to predict with a good agreement the crack growth in the case of complex loading and complex specimen geometries.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2008.11.002</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Cohesive zone model ; Creep ; Creep–fatigue regime ; Engineering Sciences ; Exact sciences and technology ; Fatigue ; Fatigue crack growth ; Materials ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Single crystal</subject><ispartof>International journal of fatigue, 2009-05, Vol.31 (5), p.868-879</ispartof><rights>2008 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-5a649d6ed11a9daa899c4cb71146160e00d55357944dd3aebb3db3b3cf8dd0f33</citedby><orcidid>0009-0002-0169-5687 ; 0000-0001-6113-6639</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2008.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21295453$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://minesparis-psl.hal.science/hal-01720464$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouvard, J.L.</creatorcontrib><creatorcontrib>Chaboche, J.L.</creatorcontrib><creatorcontrib>Feyel, F.</creatorcontrib><creatorcontrib>Gallerneau, F.</creatorcontrib><title>A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys</title><title>International journal of fatigue</title><description>A numerical analysis using cohesive zone model under cyclic loading is proposed to develop a coupled predictive approach of crack growth in single crystal. The process of material damage during fatigue crack growth is described using an irreversible cohesive zone model, which governs the separation of the crack flanks and eventually leads to the formation of free surfaces. The cohesive zone element is modeled to accumulate fatigue damage during loadings and no damage during unloadings. This paper presents the damage model and its application in the study of the crack growth for precracked specimens. The use of cohesive zone approach is validated through a convergence study. Then, a general procedure of parameters calibration is presented in pure fatigue crack growth. In the last section, an extension of the cohesive zone model is presented in the case of creep–fatigue regime at high temperature. The model showed its capability to predict with a good agreement the crack growth in the case of complex loading and complex specimen geometries.</description><subject>Applied sciences</subject><subject>Cohesive zone model</subject><subject>Creep</subject><subject>Creep–fatigue regime</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue crack growth</subject><subject>Materials</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Single crystal</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkMGO0zAURS0EEmWYbxhvQGKR8F7sJPWyGgGDVIkNrI1jv7QublzstKizmn_gD_kSUrV0y-pJV-fdKx3G7hBKBGzeb0q_6c3oV3sqK4B5iVgCVM_YDOetKoSsq-dsBiirArESL9mrnDcAoKCtZ-z7gtu4puwPxB_jQHwbHQXex8QvpdwMjttEtPvz9PtfZpOxP_gqxV_jmvuBZz-swik-5tEEnvc7SiaEeMyv2YvehEy3l3vDvn388PX-oVh--fT5frEsrEQYi9o0UrmGHKJRzpi5UlbarkWUDTZAAK6uRd0qKZ0ThrpOuE50wvZz56AX4oa9O_euTdC75LcmHXU0Xj8slvqUAbYVyEYecGLfntldij_3lEe99dlSCGaguM9aCFDYynoC2zNoU8w5UX9tRtAn-3qjr_b1yb5G1JP96fPNZcJka0KfzGB9vr5XWKl6Gpi4xZmjyc3BU9LZehosOZ_IjtpF_9-tv6_2oMI</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Bouvard, J.L.</creator><creator>Chaboche, J.L.</creator><creator>Feyel, F.</creator><creator>Gallerneau, F.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0009-0002-0169-5687</orcidid><orcidid>https://orcid.org/0000-0001-6113-6639</orcidid></search><sort><creationdate>20090501</creationdate><title>A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys</title><author>Bouvard, J.L. ; Chaboche, J.L. ; Feyel, F. ; Gallerneau, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-5a649d6ed11a9daa899c4cb71146160e00d55357944dd3aebb3db3b3cf8dd0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Cohesive zone model</topic><topic>Creep</topic><topic>Creep–fatigue regime</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue crack growth</topic><topic>Materials</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Single crystal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouvard, J.L.</creatorcontrib><creatorcontrib>Chaboche, J.L.</creatorcontrib><creatorcontrib>Feyel, F.</creatorcontrib><creatorcontrib>Gallerneau, F.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouvard, J.L.</au><au>Chaboche, J.L.</au><au>Feyel, F.</au><au>Gallerneau, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys</atitle><jtitle>International journal of fatigue</jtitle><date>2009-05-01</date><risdate>2009</risdate><volume>31</volume><issue>5</issue><spage>868</spage><epage>879</epage><pages>868-879</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>A numerical analysis using cohesive zone model under cyclic loading is proposed to develop a coupled predictive approach of crack growth in single crystal. The process of material damage during fatigue crack growth is described using an irreversible cohesive zone model, which governs the separation of the crack flanks and eventually leads to the formation of free surfaces. The cohesive zone element is modeled to accumulate fatigue damage during loadings and no damage during unloadings. This paper presents the damage model and its application in the study of the crack growth for precracked specimens. The use of cohesive zone approach is validated through a convergence study. Then, a general procedure of parameters calibration is presented in pure fatigue crack growth. In the last section, an extension of the cohesive zone model is presented in the case of creep–fatigue regime at high temperature. The model showed its capability to predict with a good agreement the crack growth in the case of complex loading and complex specimen geometries.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2008.11.002</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0002-0169-5687</orcidid><orcidid>https://orcid.org/0000-0001-6113-6639</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2009-05, Vol.31 (5), p.868-879 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01720464v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Cohesive zone model Creep Creep–fatigue regime Engineering Sciences Exact sciences and technology Fatigue Fatigue crack growth Materials Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Single crystal |
title | A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cohesive%20zone%20model%20for%20fatigue%20and%20creep%E2%80%93fatigue%20crack%20growth%20in%20single%20crystal%20superalloys&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Bouvard,%20J.L.&rft.date=2009-05-01&rft.volume=31&rft.issue=5&rft.spage=868&rft.epage=879&rft.pages=868-879&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/j.ijfatigue.2008.11.002&rft_dat=%3Cproquest_hal_p%3E33091745%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33091745&rft_id=info:pmid/&rft_els_id=S0142112308002521&rfr_iscdi=true |