Uncertainty quantification and global sensitivity analysis of longitudinal wave propagation in circular bars. Application to SHPB device

The experimental characterisation of materials at intermediate strain rates often implies the use of split Hopkinson pressure bars. Shifting the measured pulses in the bars requires to take dispersion into account. However, the dispersion correction, in the case of linear elastic bars, relies on phy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2018-03, Vol.134, p.264-271
Hauptverfasser: Brizard, D., Jacquelin, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 271
container_issue
container_start_page 264
container_title International journal of solids and structures
container_volume 134
creator Brizard, D.
Jacquelin, E.
description The experimental characterisation of materials at intermediate strain rates often implies the use of split Hopkinson pressure bars. Shifting the measured pulses in the bars requires to take dispersion into account. However, the dispersion correction, in the case of linear elastic bars, relies on physical parameters which are measured with a given accuracy (bar velocity c0, bar radius r0, Poisson’s ratio ν and propagation distance x). The object of the present article is to evaluate the influence of the uncertainty on these parameters and quantify the uncertainty on the resulting propagated pulse. A common dispersion correction method is based on a nonlinear curve fitting approach of the real dispersion curve. The accuracy of this approximate method is first assessed and we show that it can lead to non negligible errors on the computation of the propagated pulse in the context of SHPB (typically a few percent). The numerical solving of the dispersion equation is therefore preferred. We then use Latin hypercube sampling to perform an uncertainty quantification (UQ) on the propagated pulse. The next step is a Sobol’ sensitivity analysis (SA) to identify the most influential parameters on the error on the propagated pulse. For an identical relative uncertainty on the parameters of 0.1%, the maximum uncertainty on the propagated pulse is 3% of the pulse amplitude. Therefore, even with carefully measured parameters, the UQ on the dispersion correction procedure for SHPB tests cannot be neglected. The SA gives the order of decreasing importance of the parameters: c0, r0; x and ν. This can be helpful if one wants to reduce the uncertainty as it indicates on which parameter(s) the measurement accuracy must be improved in priority.
doi_str_mv 10.1016/j.ijsolstr.2017.11.005
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01719535v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768317305097</els_id><sourcerecordid>2067369966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-47f83a931e5e7abdc0f7421e419f7673a9dd1bce27466219e32c5da6a2a5afea3</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi1EJYaWV0CWWLFIsPNjT3YMVWGQRqJS6dq64zjDjYyd2k7QvAGPjUehbFlZuj73sz4fQt5yVnLGxYexxDF6G1MoK8ZlyXnJWPuCbPhWdkXFG_GSbBirWCHFtn5FXsc4MsaaumMb8vvRaRMSoEtn-jSDSzighoTeUXA9PVl_BEujcRETLpgpcGDPESP1A7XenTDNPeYZ_QWLoVPwE5zWAHRUY9CzhUCPEGJJd9Nkn-OTpw_7-0-0Nwtqc0OuBrDRvPl7XpPHz3ffb_fF4duXr7e7Q6Fr2aSikcO2hq7mpjUSjr1mg2wqbhreDVLIfNX3_KhNJRshKt6ZutJtDwIqaGEwUF-T92vuD7BqCvgTwll5QLXfHdRllr-Qd23dLjyz71Y2l3qaTUxq9HPIVaOqWH5MdJ0QmRIrpYOPMZjhXyxn6mJIjerZkLoYUpyrbCgvflwXTe67oAkqajTZR4_B6KR6j_-L-ANyZaB5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067369966</pqid></control><display><type>article</type><title>Uncertainty quantification and global sensitivity analysis of longitudinal wave propagation in circular bars. Application to SHPB device</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Brizard, D. ; Jacquelin, E.</creator><creatorcontrib>Brizard, D. ; Jacquelin, E.</creatorcontrib><description>The experimental characterisation of materials at intermediate strain rates often implies the use of split Hopkinson pressure bars. Shifting the measured pulses in the bars requires to take dispersion into account. However, the dispersion correction, in the case of linear elastic bars, relies on physical parameters which are measured with a given accuracy (bar velocity c0, bar radius r0, Poisson’s ratio ν and propagation distance x). The object of the present article is to evaluate the influence of the uncertainty on these parameters and quantify the uncertainty on the resulting propagated pulse. A common dispersion correction method is based on a nonlinear curve fitting approach of the real dispersion curve. The accuracy of this approximate method is first assessed and we show that it can lead to non negligible errors on the computation of the propagated pulse in the context of SHPB (typically a few percent). The numerical solving of the dispersion equation is therefore preferred. We then use Latin hypercube sampling to perform an uncertainty quantification (UQ) on the propagated pulse. The next step is a Sobol’ sensitivity analysis (SA) to identify the most influential parameters on the error on the propagated pulse. For an identical relative uncertainty on the parameters of 0.1%, the maximum uncertainty on the propagated pulse is 3% of the pulse amplitude. Therefore, even with carefully measured parameters, the UQ on the dispersion correction procedure for SHPB tests cannot be neglected. The SA gives the order of decreasing importance of the parameters: c0, r0; x and ν. This can be helpful if one wants to reduce the uncertainty as it indicates on which parameter(s) the measurement accuracy must be improved in priority.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2017.11.005</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Biomechanics ; Curve fitting ; Dispersion correction ; Dispersion curve analysis ; Elastic bars ; Engineering Sciences ; Hypercubes ; Latin hypercube sampling ; Longitudinal waves ; Mechanics ; Parameter identification ; Parameter sensitivity ; Parameter uncertainty ; Physical properties ; Poisson distribution ; Poisson's ratio ; Pulse amplitude ; Pulse propagation ; Sensitivity analysis ; Split Hopkinson Pressure Bar ; Split Hopkinson pressure bars ; Strain rate ; Studies ; Uncertainty ; Uncertainty quantification ; Wave dispersion ; Wave propagation</subject><ispartof>International journal of solids and structures, 2018-03, Vol.134, p.264-271</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 1, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-47f83a931e5e7abdc0f7421e419f7673a9dd1bce27466219e32c5da6a2a5afea3</citedby><cites>FETCH-LOGICAL-c374t-47f83a931e5e7abdc0f7421e419f7673a9dd1bce27466219e32c5da6a2a5afea3</cites><orcidid>0000-0003-2264-7131</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2017.11.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01719535$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brizard, D.</creatorcontrib><creatorcontrib>Jacquelin, E.</creatorcontrib><title>Uncertainty quantification and global sensitivity analysis of longitudinal wave propagation in circular bars. Application to SHPB device</title><title>International journal of solids and structures</title><description>The experimental characterisation of materials at intermediate strain rates often implies the use of split Hopkinson pressure bars. Shifting the measured pulses in the bars requires to take dispersion into account. However, the dispersion correction, in the case of linear elastic bars, relies on physical parameters which are measured with a given accuracy (bar velocity c0, bar radius r0, Poisson’s ratio ν and propagation distance x). The object of the present article is to evaluate the influence of the uncertainty on these parameters and quantify the uncertainty on the resulting propagated pulse. A common dispersion correction method is based on a nonlinear curve fitting approach of the real dispersion curve. The accuracy of this approximate method is first assessed and we show that it can lead to non negligible errors on the computation of the propagated pulse in the context of SHPB (typically a few percent). The numerical solving of the dispersion equation is therefore preferred. We then use Latin hypercube sampling to perform an uncertainty quantification (UQ) on the propagated pulse. The next step is a Sobol’ sensitivity analysis (SA) to identify the most influential parameters on the error on the propagated pulse. For an identical relative uncertainty on the parameters of 0.1%, the maximum uncertainty on the propagated pulse is 3% of the pulse amplitude. Therefore, even with carefully measured parameters, the UQ on the dispersion correction procedure for SHPB tests cannot be neglected. The SA gives the order of decreasing importance of the parameters: c0, r0; x and ν. This can be helpful if one wants to reduce the uncertainty as it indicates on which parameter(s) the measurement accuracy must be improved in priority.</description><subject>Biomechanics</subject><subject>Curve fitting</subject><subject>Dispersion correction</subject><subject>Dispersion curve analysis</subject><subject>Elastic bars</subject><subject>Engineering Sciences</subject><subject>Hypercubes</subject><subject>Latin hypercube sampling</subject><subject>Longitudinal waves</subject><subject>Mechanics</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Parameter uncertainty</subject><subject>Physical properties</subject><subject>Poisson distribution</subject><subject>Poisson's ratio</subject><subject>Pulse amplitude</subject><subject>Pulse propagation</subject><subject>Sensitivity analysis</subject><subject>Split Hopkinson Pressure Bar</subject><subject>Split Hopkinson pressure bars</subject><subject>Strain rate</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Uncertainty quantification</subject><subject>Wave dispersion</subject><subject>Wave propagation</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAURi1EJYaWV0CWWLFIsPNjT3YMVWGQRqJS6dq64zjDjYyd2k7QvAGPjUehbFlZuj73sz4fQt5yVnLGxYexxDF6G1MoK8ZlyXnJWPuCbPhWdkXFG_GSbBirWCHFtn5FXsc4MsaaumMb8vvRaRMSoEtn-jSDSzighoTeUXA9PVl_BEujcRETLpgpcGDPESP1A7XenTDNPeYZ_QWLoVPwE5zWAHRUY9CzhUCPEGJJd9Nkn-OTpw_7-0-0Nwtqc0OuBrDRvPl7XpPHz3ffb_fF4duXr7e7Q6Fr2aSikcO2hq7mpjUSjr1mg2wqbhreDVLIfNX3_KhNJRshKt6ZutJtDwIqaGEwUF-T92vuD7BqCvgTwll5QLXfHdRllr-Qd23dLjyz71Y2l3qaTUxq9HPIVaOqWH5MdJ0QmRIrpYOPMZjhXyxn6mJIjerZkLoYUpyrbCgvflwXTe67oAkqajTZR4_B6KR6j_-L-ANyZaB5</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Brizard, D.</creator><creator>Jacquelin, E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2264-7131</orcidid></search><sort><creationdate>20180301</creationdate><title>Uncertainty quantification and global sensitivity analysis of longitudinal wave propagation in circular bars. Application to SHPB device</title><author>Brizard, D. ; Jacquelin, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-47f83a931e5e7abdc0f7421e419f7673a9dd1bce27466219e32c5da6a2a5afea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomechanics</topic><topic>Curve fitting</topic><topic>Dispersion correction</topic><topic>Dispersion curve analysis</topic><topic>Elastic bars</topic><topic>Engineering Sciences</topic><topic>Hypercubes</topic><topic>Latin hypercube sampling</topic><topic>Longitudinal waves</topic><topic>Mechanics</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Parameter uncertainty</topic><topic>Physical properties</topic><topic>Poisson distribution</topic><topic>Poisson's ratio</topic><topic>Pulse amplitude</topic><topic>Pulse propagation</topic><topic>Sensitivity analysis</topic><topic>Split Hopkinson Pressure Bar</topic><topic>Split Hopkinson pressure bars</topic><topic>Strain rate</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Uncertainty quantification</topic><topic>Wave dispersion</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brizard, D.</creatorcontrib><creatorcontrib>Jacquelin, E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brizard, D.</au><au>Jacquelin, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty quantification and global sensitivity analysis of longitudinal wave propagation in circular bars. Application to SHPB device</atitle><jtitle>International journal of solids and structures</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>134</volume><spage>264</spage><epage>271</epage><pages>264-271</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>The experimental characterisation of materials at intermediate strain rates often implies the use of split Hopkinson pressure bars. Shifting the measured pulses in the bars requires to take dispersion into account. However, the dispersion correction, in the case of linear elastic bars, relies on physical parameters which are measured with a given accuracy (bar velocity c0, bar radius r0, Poisson’s ratio ν and propagation distance x). The object of the present article is to evaluate the influence of the uncertainty on these parameters and quantify the uncertainty on the resulting propagated pulse. A common dispersion correction method is based on a nonlinear curve fitting approach of the real dispersion curve. The accuracy of this approximate method is first assessed and we show that it can lead to non negligible errors on the computation of the propagated pulse in the context of SHPB (typically a few percent). The numerical solving of the dispersion equation is therefore preferred. We then use Latin hypercube sampling to perform an uncertainty quantification (UQ) on the propagated pulse. The next step is a Sobol’ sensitivity analysis (SA) to identify the most influential parameters on the error on the propagated pulse. For an identical relative uncertainty on the parameters of 0.1%, the maximum uncertainty on the propagated pulse is 3% of the pulse amplitude. Therefore, even with carefully measured parameters, the UQ on the dispersion correction procedure for SHPB tests cannot be neglected. The SA gives the order of decreasing importance of the parameters: c0, r0; x and ν. This can be helpful if one wants to reduce the uncertainty as it indicates on which parameter(s) the measurement accuracy must be improved in priority.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2017.11.005</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2264-7131</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2018-03, Vol.134, p.264-271
issn 0020-7683
1879-2146
language eng
recordid cdi_hal_primary_oai_HAL_hal_01719535v1
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Biomechanics
Curve fitting
Dispersion correction
Dispersion curve analysis
Elastic bars
Engineering Sciences
Hypercubes
Latin hypercube sampling
Longitudinal waves
Mechanics
Parameter identification
Parameter sensitivity
Parameter uncertainty
Physical properties
Poisson distribution
Poisson's ratio
Pulse amplitude
Pulse propagation
Sensitivity analysis
Split Hopkinson Pressure Bar
Split Hopkinson pressure bars
Strain rate
Studies
Uncertainty
Uncertainty quantification
Wave dispersion
Wave propagation
title Uncertainty quantification and global sensitivity analysis of longitudinal wave propagation in circular bars. Application to SHPB device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T06%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20quantification%20and%20global%20sensitivity%20analysis%20of%20longitudinal%20wave%20propagation%20in%20circular%20bars.%20Application%20to%20SHPB%20device&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Brizard,%20D.&rft.date=2018-03-01&rft.volume=134&rft.spage=264&rft.epage=271&rft.pages=264-271&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2017.11.005&rft_dat=%3Cproquest_hal_p%3E2067369966%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067369966&rft_id=info:pmid/&rft_els_id=S0020768317305097&rfr_iscdi=true