Image-Based Synthesis for Deep 3D Human Pose Estimation

This paper addresses the problem of 3D human pose estimation in the wild. A significant challenge is the lack of training data, i.e., 2D images of humans annotated with 3D poses. Such data is necessary to train state-of-the-art CNN architectures. Here, we propose a solution to generate a large set o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2018-09, Vol.126 (9), p.993-1008
Hauptverfasser: Rogez, Grégory, Schmid, Cordelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1008
container_issue 9
container_start_page 993
container_title International journal of computer vision
container_volume 126
creator Rogez, Grégory
Schmid, Cordelia
description This paper addresses the problem of 3D human pose estimation in the wild. A significant challenge is the lack of training data, i.e., 2D images of humans annotated with 3D poses. Such data is necessary to train state-of-the-art CNN architectures. Here, we propose a solution to generate a large set of photorealistic synthetic images of humans with 3D pose annotations. We introduce an image-based synthesis engine that artificially augments a dataset of real images with 2D human pose annotations using 3D motion capture data. Given a candidate 3D pose, our algorithm selects for each joint an image whose 2D pose locally matches the projected 3D pose. The selected images are then combined to generate a new synthetic image by stitching local image patches in a kinematically constrained manner. The resulting images are used to train an end-to-end CNN for full-body 3D pose estimation. We cluster the training data into a large number of pose classes and tackle pose estimation as a K -way classification problem. Such an approach is viable only with large training sets such as ours. Our method outperforms most of the published works in terms of 3D pose estimation in controlled environments (Human3.6M) and shows promising results for real-world images (LSP). This demonstrates that CNNs trained on artificial images generalize well to real images. Compared to data generated from more classical rendering engines, our synthetic images do not require any domain adaptation or fine-tuning stage.
doi_str_mv 10.1007/s11263-018-1071-9
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01717188v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550220576</galeid><sourcerecordid>A550220576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-f71ef192b02a6966229b429c3ada89128bed981eb8988a82f4eece9c08709be43</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWD9-gLcFTx6iM9ndbHKsWm2hoFg9h-x2tq60m5psRf-9KVsUDzKHgeF5kwdexs4QLhGguAqIQqYcUHGEArneYwPMi5RjBvk-G4AWwHOp8ZAdhfAGAEKJdMCKycouiF_bQPNk9tV2rxSakNTOJ7dE6yS9TcablW2TRxcoGYWuWdmuce0JO6jtMtDpbh-zl7vR882YTx_uJzfDKa8yKTteF0g1alGCsFJLKYQuM6Gr1M6t0ihUSXOtkEqllbJK1BlRRboCVYAuKUuP2UX_7qtdmrWPv_sv42xjxsOp2d4AizhKfWBkz3t27d37hkJn3tzGt1HPCMA8yxGkitRlTy3skkzT1q7ztoozp1VTuZbqJt6HeQ5CQF7IX4VdIDIdfXYLuwnBTGZPf1ns2cq7EDzVP84IZluU6YuK2spsizI6ZkSfCZFtF-R_tf8PfQMa_pDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015451068</pqid></control><display><type>article</type><title>Image-Based Synthesis for Deep 3D Human Pose Estimation</title><source>SpringerLink_现刊</source><creator>Rogez, Grégory ; Schmid, Cordelia</creator><creatorcontrib>Rogez, Grégory ; Schmid, Cordelia</creatorcontrib><description>This paper addresses the problem of 3D human pose estimation in the wild. A significant challenge is the lack of training data, i.e., 2D images of humans annotated with 3D poses. Such data is necessary to train state-of-the-art CNN architectures. Here, we propose a solution to generate a large set of photorealistic synthetic images of humans with 3D pose annotations. We introduce an image-based synthesis engine that artificially augments a dataset of real images with 2D human pose annotations using 3D motion capture data. Given a candidate 3D pose, our algorithm selects for each joint an image whose 2D pose locally matches the projected 3D pose. The selected images are then combined to generate a new synthetic image by stitching local image patches in a kinematically constrained manner. The resulting images are used to train an end-to-end CNN for full-body 3D pose estimation. We cluster the training data into a large number of pose classes and tackle pose estimation as a K -way classification problem. Such an approach is viable only with large training sets such as ours. Our method outperforms most of the published works in terms of 3D pose estimation in controlled environments (Human3.6M) and shows promising results for real-world images (LSP). This demonstrates that CNNs trained on artificial images generalize well to real images. Compared to data generated from more classical rendering engines, our synthetic images do not require any domain adaptation or fine-tuning stage.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-018-1071-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Annotations ; Artificial Intelligence ; Computer Imaging ; Computer Science ; Computer Vision and Pattern Recognition ; Human motion ; Image Processing and Computer Vision ; Motion capture ; Pattern Recognition ; Pattern Recognition and Graphics ; Pose estimation ; Stitching ; Synthesis ; Three dimensional bodies ; Three dimensional motion ; Training ; Vision</subject><ispartof>International journal of computer vision, 2018-09, Vol.126 (9), p.993-1008</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>International Journal of Computer Vision is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-f71ef192b02a6966229b429c3ada89128bed981eb8988a82f4eece9c08709be43</citedby><cites>FETCH-LOGICAL-c466t-f71ef192b02a6966229b429c3ada89128bed981eb8988a82f4eece9c08709be43</cites><orcidid>0000-0002-2275-2129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-018-1071-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-018-1071-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01717188$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rogez, Grégory</creatorcontrib><creatorcontrib>Schmid, Cordelia</creatorcontrib><title>Image-Based Synthesis for Deep 3D Human Pose Estimation</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>This paper addresses the problem of 3D human pose estimation in the wild. A significant challenge is the lack of training data, i.e., 2D images of humans annotated with 3D poses. Such data is necessary to train state-of-the-art CNN architectures. Here, we propose a solution to generate a large set of photorealistic synthetic images of humans with 3D pose annotations. We introduce an image-based synthesis engine that artificially augments a dataset of real images with 2D human pose annotations using 3D motion capture data. Given a candidate 3D pose, our algorithm selects for each joint an image whose 2D pose locally matches the projected 3D pose. The selected images are then combined to generate a new synthetic image by stitching local image patches in a kinematically constrained manner. The resulting images are used to train an end-to-end CNN for full-body 3D pose estimation. We cluster the training data into a large number of pose classes and tackle pose estimation as a K -way classification problem. Such an approach is viable only with large training sets such as ours. Our method outperforms most of the published works in terms of 3D pose estimation in controlled environments (Human3.6M) and shows promising results for real-world images (LSP). This demonstrates that CNNs trained on artificial images generalize well to real images. Compared to data generated from more classical rendering engines, our synthetic images do not require any domain adaptation or fine-tuning stage.</description><subject>Annotations</subject><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Human motion</subject><subject>Image Processing and Computer Vision</subject><subject>Motion capture</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Pose estimation</subject><subject>Stitching</subject><subject>Synthesis</subject><subject>Three dimensional bodies</subject><subject>Three dimensional motion</subject><subject>Training</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LAzEQhoMoWD9-gLcFTx6iM9ndbHKsWm2hoFg9h-x2tq60m5psRf-9KVsUDzKHgeF5kwdexs4QLhGguAqIQqYcUHGEArneYwPMi5RjBvk-G4AWwHOp8ZAdhfAGAEKJdMCKycouiF_bQPNk9tV2rxSakNTOJ7dE6yS9TcablW2TRxcoGYWuWdmuce0JO6jtMtDpbh-zl7vR882YTx_uJzfDKa8yKTteF0g1alGCsFJLKYQuM6Gr1M6t0ihUSXOtkEqllbJK1BlRRboCVYAuKUuP2UX_7qtdmrWPv_sv42xjxsOp2d4AizhKfWBkz3t27d37hkJn3tzGt1HPCMA8yxGkitRlTy3skkzT1q7ztoozp1VTuZbqJt6HeQ5CQF7IX4VdIDIdfXYLuwnBTGZPf1ns2cq7EDzVP84IZluU6YuK2spsizI6ZkSfCZFtF-R_tf8PfQMa_pDg</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Rogez, Grégory</creator><creator>Schmid, Cordelia</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2275-2129</orcidid></search><sort><creationdate>20180901</creationdate><title>Image-Based Synthesis for Deep 3D Human Pose Estimation</title><author>Rogez, Grégory ; Schmid, Cordelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-f71ef192b02a6966229b429c3ada89128bed981eb8988a82f4eece9c08709be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annotations</topic><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Human motion</topic><topic>Image Processing and Computer Vision</topic><topic>Motion capture</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Pose estimation</topic><topic>Stitching</topic><topic>Synthesis</topic><topic>Three dimensional bodies</topic><topic>Three dimensional motion</topic><topic>Training</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogez, Grégory</creatorcontrib><creatorcontrib>Schmid, Cordelia</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogez, Grégory</au><au>Schmid, Cordelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image-Based Synthesis for Deep 3D Human Pose Estimation</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>126</volume><issue>9</issue><spage>993</spage><epage>1008</epage><pages>993-1008</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>This paper addresses the problem of 3D human pose estimation in the wild. A significant challenge is the lack of training data, i.e., 2D images of humans annotated with 3D poses. Such data is necessary to train state-of-the-art CNN architectures. Here, we propose a solution to generate a large set of photorealistic synthetic images of humans with 3D pose annotations. We introduce an image-based synthesis engine that artificially augments a dataset of real images with 2D human pose annotations using 3D motion capture data. Given a candidate 3D pose, our algorithm selects for each joint an image whose 2D pose locally matches the projected 3D pose. The selected images are then combined to generate a new synthetic image by stitching local image patches in a kinematically constrained manner. The resulting images are used to train an end-to-end CNN for full-body 3D pose estimation. We cluster the training data into a large number of pose classes and tackle pose estimation as a K -way classification problem. Such an approach is viable only with large training sets such as ours. Our method outperforms most of the published works in terms of 3D pose estimation in controlled environments (Human3.6M) and shows promising results for real-world images (LSP). This demonstrates that CNNs trained on artificial images generalize well to real images. Compared to data generated from more classical rendering engines, our synthetic images do not require any domain adaptation or fine-tuning stage.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-018-1071-9</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2275-2129</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-5691
ispartof International journal of computer vision, 2018-09, Vol.126 (9), p.993-1008
issn 0920-5691
1573-1405
language eng
recordid cdi_hal_primary_oai_HAL_hal_01717188v1
source SpringerLink_现刊
subjects Annotations
Artificial Intelligence
Computer Imaging
Computer Science
Computer Vision and Pattern Recognition
Human motion
Image Processing and Computer Vision
Motion capture
Pattern Recognition
Pattern Recognition and Graphics
Pose estimation
Stitching
Synthesis
Three dimensional bodies
Three dimensional motion
Training
Vision
title Image-Based Synthesis for Deep 3D Human Pose Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image-Based%20Synthesis%20for%20Deep%203D%20Human%20Pose%20Estimation&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Rogez,%20Gr%C3%A9gory&rft.date=2018-09-01&rft.volume=126&rft.issue=9&rft.spage=993&rft.epage=1008&rft.pages=993-1008&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-018-1071-9&rft_dat=%3Cgale_hal_p%3EA550220576%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015451068&rft_id=info:pmid/&rft_galeid=A550220576&rfr_iscdi=true