Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation
The aim of this talk is to describe a generalization of the classical Mourre theorem [M1] to the Krein space setting. Applications to the Klein–Gordon equation are given. The talk is based on joint work with Vladimir Georgescu and Christian Gérard. Details of the proofs can be found in [GGH1] and [G...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | |
container_start_page | 133 |
container_title | |
container_volume | 254 |
creator | Häfner, Dietrich |
description | The aim of this talk is to describe a generalization of the classical Mourre theorem [M1] to the Krein space setting. Applications to the Klein–Gordon equation are given. The talk is based on joint work with Vladimir Georgescu and Christian Gérard. Details of the proofs can be found in [GGH1] and [GGH2]. |
doi_str_mv | 10.1007/978-3-319-29992-1_8 |
format | Book Chapter |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01709737v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4573802_100_139</sourcerecordid><originalsourceid>FETCH-LOGICAL-h276t-492fe8717634e48706c0808be5a18c7f866a5dd9be7822629d6d8b2b63bd13153</originalsourceid><addsrcrecordid>eNo1kc1OGzEUhd1SKlKaJ2DjLQtT_4z_lgFRQImERNpuLc_YQ4ZOx4PtgLrjHXhDnqSepGyu5XPPudL9LgAnBJ8RjOU3LRViiBGNqNaaImLUBzAvKivaTiIfwYxSLVClpDoAX94bmH8CM0w5R5hw8RnMNGeC60pVR2Ce0gPGmEgsS52B5_OwHZyNf-Ev2299gqGFdz6F_skPefdb-75F1j2EbsjwdvTR5hAT7Aa4jL7U9WibkrODg4tx7LvG5i4MCeYA88bDZV9Mby-vVyG6MMDLx-2u_xUctrZPfv7_PQY_v1_-uLhGq9urm4vFCm2oFBlVmrZeSSIFq3xZE4sGK6xqzy1RjWyVEJY7p2svFaWCaiecqmktWO0II5wdg9P93I3tzRi7P2VVE2xnrhcrM2kTCi2ZfCLFS_beVIzDvY-mDuF3MgSb6SKmsDfMFMhmh9-Ui5RMtc-MMTwWftn4KdQUetH2zcaO2cdkKi6ZwnSaYwjT7B_op4qG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC4573802_100_139</pqid></control><display><type>book_chapter</type><title>Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation</title><source>Springer Books</source><creator>Häfner, Dietrich</creator><contributor>Raikov, Georgi ; Tiedra de Aldecoa, Rafael ; Mantoiu, Marius ; Tiedra de Aldecoa, Rafael ; Mantoiu, Marius ; Raikov, Georgi</contributor><creatorcontrib>Häfner, Dietrich ; Raikov, Georgi ; Tiedra de Aldecoa, Rafael ; Mantoiu, Marius ; Tiedra de Aldecoa, Rafael ; Mantoiu, Marius ; Raikov, Georgi</creatorcontrib><description>The aim of this talk is to describe a generalization of the classical Mourre theorem [M1] to the Krein space setting. Applications to the Klein–Gordon equation are given. The talk is based on joint work with Vladimir Georgescu and Christian Gérard. Details of the proofs can be found in [GGH1] and [GGH2].</description><identifier>ISSN: 0255-0156</identifier><identifier>ISBN: 3319299905</identifier><identifier>ISBN: 9783319299907</identifier><identifier>ISBN: 9783319299921</identifier><identifier>ISBN: 3319299921</identifier><identifier>EISSN: 2296-4878</identifier><identifier>EISBN: 9783319299921</identifier><identifier>EISBN: 3319299921</identifier><identifier>DOI: 10.1007/978-3-319-29992-1_8</identifier><identifier>OCLC: 953659484</identifier><identifier>LCCallNum: QA319-329.9</identifier><language>eng</language><publisher>Switzerland: Springer Basel AG</publisher><subject>Differential equations ; Functional analysis & transforms ; functional calculus ; Klein–Gordon equations ; Krein spaces ; Mathematical physics ; Mathematics ; Mourre theory ; propagation estimates ; resolvent estimates</subject><ispartof>Spectral Theory and Mathematical Physics, 2016, Vol.254, p.133-148</ispartof><rights>Springer International Publishing Switzerland 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5152-2277</orcidid><relation>Operator Theory: Advances and Applications</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/4573802-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-319-29992-1_8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-319-29992-1_8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,779,780,784,793,885,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01709737$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Raikov, Georgi</contributor><contributor>Tiedra de Aldecoa, Rafael</contributor><contributor>Mantoiu, Marius</contributor><contributor>Tiedra de Aldecoa, Rafael</contributor><contributor>Mantoiu, Marius</contributor><contributor>Raikov, Georgi</contributor><creatorcontrib>Häfner, Dietrich</creatorcontrib><title>Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation</title><title>Spectral Theory and Mathematical Physics</title><description>The aim of this talk is to describe a generalization of the classical Mourre theorem [M1] to the Krein space setting. Applications to the Klein–Gordon equation are given. The talk is based on joint work with Vladimir Georgescu and Christian Gérard. Details of the proofs can be found in [GGH1] and [GGH2].</description><subject>Differential equations</subject><subject>Functional analysis & transforms</subject><subject>functional calculus</subject><subject>Klein–Gordon equations</subject><subject>Krein spaces</subject><subject>Mathematical physics</subject><subject>Mathematics</subject><subject>Mourre theory</subject><subject>propagation estimates</subject><subject>resolvent estimates</subject><issn>0255-0156</issn><issn>2296-4878</issn><isbn>3319299905</isbn><isbn>9783319299907</isbn><isbn>9783319299921</isbn><isbn>3319299921</isbn><isbn>9783319299921</isbn><isbn>3319299921</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2016</creationdate><recordtype>book_chapter</recordtype><recordid>eNo1kc1OGzEUhd1SKlKaJ2DjLQtT_4z_lgFRQImERNpuLc_YQ4ZOx4PtgLrjHXhDnqSepGyu5XPPudL9LgAnBJ8RjOU3LRViiBGNqNaaImLUBzAvKivaTiIfwYxSLVClpDoAX94bmH8CM0w5R5hw8RnMNGeC60pVR2Ce0gPGmEgsS52B5_OwHZyNf-Ev2299gqGFdz6F_skPefdb-75F1j2EbsjwdvTR5hAT7Aa4jL7U9WibkrODg4tx7LvG5i4MCeYA88bDZV9Mby-vVyG6MMDLx-2u_xUctrZPfv7_PQY_v1_-uLhGq9urm4vFCm2oFBlVmrZeSSIFq3xZE4sGK6xqzy1RjWyVEJY7p2svFaWCaiecqmktWO0II5wdg9P93I3tzRi7P2VVE2xnrhcrM2kTCi2ZfCLFS_beVIzDvY-mDuF3MgSb6SKmsDfMFMhmh9-Ui5RMtc-MMTwWftn4KdQUetH2zcaO2cdkKi6ZwnSaYwjT7B_op4qG</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Häfner, Dietrich</creator><general>Springer Basel AG</general><general>Springer International Publishing</general><scope>FFUUA</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5152-2277</orcidid></search><sort><creationdate>20160101</creationdate><title>Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation</title><author>Häfner, Dietrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h276t-492fe8717634e48706c0808be5a18c7f866a5dd9be7822629d6d8b2b63bd13153</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Differential equations</topic><topic>Functional analysis & transforms</topic><topic>functional calculus</topic><topic>Klein–Gordon equations</topic><topic>Krein spaces</topic><topic>Mathematical physics</topic><topic>Mathematics</topic><topic>Mourre theory</topic><topic>propagation estimates</topic><topic>resolvent estimates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Häfner, Dietrich</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Häfner, Dietrich</au><au>Raikov, Georgi</au><au>Tiedra de Aldecoa, Rafael</au><au>Mantoiu, Marius</au><au>Tiedra de Aldecoa, Rafael</au><au>Mantoiu, Marius</au><au>Raikov, Georgi</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation</atitle><btitle>Spectral Theory and Mathematical Physics</btitle><seriestitle>Operator Theory: Advances and Applications</seriestitle><date>2016-01-01</date><risdate>2016</risdate><volume>254</volume><spage>133</spage><epage>148</epage><pages>133-148</pages><issn>0255-0156</issn><eissn>2296-4878</eissn><isbn>3319299905</isbn><isbn>9783319299907</isbn><isbn>9783319299921</isbn><isbn>3319299921</isbn><eisbn>9783319299921</eisbn><eisbn>3319299921</eisbn><abstract>The aim of this talk is to describe a generalization of the classical Mourre theorem [M1] to the Krein space setting. Applications to the Klein–Gordon equation are given. The talk is based on joint work with Vladimir Georgescu and Christian Gérard. Details of the proofs can be found in [GGH1] and [GGH2].</abstract><cop>Switzerland</cop><pub>Springer Basel AG</pub><doi>10.1007/978-3-319-29992-1_8</doi><oclcid>953659484</oclcid><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5152-2277</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-0156 |
ispartof | Spectral Theory and Mathematical Physics, 2016, Vol.254, p.133-148 |
issn | 0255-0156 2296-4878 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01709737v1 |
source | Springer Books |
subjects | Differential equations Functional analysis & transforms functional calculus Klein–Gordon equations Krein spaces Mathematical physics Mathematics Mourre theory propagation estimates resolvent estimates |
title | Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Boundary%20Values%20of%20Resolvents%20of%20Self-adjoint%20Operators%20in%20Krein%20Spaces%20and%20Applications%20to%20the%20Klein%E2%80%93Gordon%20Equation&rft.btitle=Spectral%20Theory%20and%20Mathematical%20Physics&rft.au=H%C3%A4fner,%20Dietrich&rft.date=2016-01-01&rft.volume=254&rft.spage=133&rft.epage=148&rft.pages=133-148&rft.issn=0255-0156&rft.eissn=2296-4878&rft.isbn=3319299905&rft.isbn_list=9783319299907&rft.isbn_list=9783319299921&rft.isbn_list=3319299921&rft_id=info:doi/10.1007/978-3-319-29992-1_8&rft_dat=%3Cproquest_hal_p%3EEBC4573802_100_139%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783319299921&rft.eisbn_list=3319299921&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4573802_100_139&rft_id=info:pmid/&rfr_iscdi=true |