Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation

The aim of this talk is to describe a generalization of the classical Mourre theorem [M1] to the Krein space setting. Applications to the Klein–Gordon equation are given. The talk is based on joint work with Vladimir Georgescu and Christian Gérard. Details of the proofs can be found in [GGH1] and [G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Häfner, Dietrich
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue
container_start_page 133
container_title
container_volume 254
creator Häfner, Dietrich
description The aim of this talk is to describe a generalization of the classical Mourre theorem [M1] to the Krein space setting. Applications to the Klein–Gordon equation are given. The talk is based on joint work with Vladimir Georgescu and Christian Gérard. Details of the proofs can be found in [GGH1] and [GGH2].
doi_str_mv 10.1007/978-3-319-29992-1_8
format Book Chapter
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01709737v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC4573802_100_139</sourcerecordid><originalsourceid>FETCH-LOGICAL-h276t-492fe8717634e48706c0808be5a18c7f866a5dd9be7822629d6d8b2b63bd13153</originalsourceid><addsrcrecordid>eNo1kc1OGzEUhd1SKlKaJ2DjLQtT_4z_lgFRQImERNpuLc_YQ4ZOx4PtgLrjHXhDnqSepGyu5XPPudL9LgAnBJ8RjOU3LRViiBGNqNaaImLUBzAvKivaTiIfwYxSLVClpDoAX94bmH8CM0w5R5hw8RnMNGeC60pVR2Ce0gPGmEgsS52B5_OwHZyNf-Ev2299gqGFdz6F_skPefdb-75F1j2EbsjwdvTR5hAT7Aa4jL7U9WibkrODg4tx7LvG5i4MCeYA88bDZV9Mby-vVyG6MMDLx-2u_xUctrZPfv7_PQY_v1_-uLhGq9urm4vFCm2oFBlVmrZeSSIFq3xZE4sGK6xqzy1RjWyVEJY7p2svFaWCaiecqmktWO0II5wdg9P93I3tzRi7P2VVE2xnrhcrM2kTCi2ZfCLFS_beVIzDvY-mDuF3MgSb6SKmsDfMFMhmh9-Ui5RMtc-MMTwWftn4KdQUetH2zcaO2cdkKi6ZwnSaYwjT7B_op4qG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC4573802_100_139</pqid></control><display><type>book_chapter</type><title>Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation</title><source>Springer Books</source><creator>Häfner, Dietrich</creator><contributor>Raikov, Georgi ; Tiedra de Aldecoa, Rafael ; Mantoiu, Marius ; Tiedra de Aldecoa, Rafael ; Mantoiu, Marius ; Raikov, Georgi</contributor><creatorcontrib>Häfner, Dietrich ; Raikov, Georgi ; Tiedra de Aldecoa, Rafael ; Mantoiu, Marius ; Tiedra de Aldecoa, Rafael ; Mantoiu, Marius ; Raikov, Georgi</creatorcontrib><description>The aim of this talk is to describe a generalization of the classical Mourre theorem [M1] to the Krein space setting. Applications to the Klein–Gordon equation are given. The talk is based on joint work with Vladimir Georgescu and Christian Gérard. Details of the proofs can be found in [GGH1] and [GGH2].</description><identifier>ISSN: 0255-0156</identifier><identifier>ISBN: 3319299905</identifier><identifier>ISBN: 9783319299907</identifier><identifier>ISBN: 9783319299921</identifier><identifier>ISBN: 3319299921</identifier><identifier>EISSN: 2296-4878</identifier><identifier>EISBN: 9783319299921</identifier><identifier>EISBN: 3319299921</identifier><identifier>DOI: 10.1007/978-3-319-29992-1_8</identifier><identifier>OCLC: 953659484</identifier><identifier>LCCallNum: QA319-329.9</identifier><language>eng</language><publisher>Switzerland: Springer Basel AG</publisher><subject>Differential equations ; Functional analysis &amp; transforms ; functional calculus ; Klein–Gordon equations ; Krein spaces ; Mathematical physics ; Mathematics ; Mourre theory ; propagation estimates ; resolvent estimates</subject><ispartof>Spectral Theory and Mathematical Physics, 2016, Vol.254, p.133-148</ispartof><rights>Springer International Publishing Switzerland 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5152-2277</orcidid><relation>Operator Theory: Advances and Applications</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/4573802-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-319-29992-1_8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-319-29992-1_8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,779,780,784,793,885,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01709737$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Raikov, Georgi</contributor><contributor>Tiedra de Aldecoa, Rafael</contributor><contributor>Mantoiu, Marius</contributor><contributor>Tiedra de Aldecoa, Rafael</contributor><contributor>Mantoiu, Marius</contributor><contributor>Raikov, Georgi</contributor><creatorcontrib>Häfner, Dietrich</creatorcontrib><title>Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation</title><title>Spectral Theory and Mathematical Physics</title><description>The aim of this talk is to describe a generalization of the classical Mourre theorem [M1] to the Krein space setting. Applications to the Klein–Gordon equation are given. The talk is based on joint work with Vladimir Georgescu and Christian Gérard. Details of the proofs can be found in [GGH1] and [GGH2].</description><subject>Differential equations</subject><subject>Functional analysis &amp; transforms</subject><subject>functional calculus</subject><subject>Klein–Gordon equations</subject><subject>Krein spaces</subject><subject>Mathematical physics</subject><subject>Mathematics</subject><subject>Mourre theory</subject><subject>propagation estimates</subject><subject>resolvent estimates</subject><issn>0255-0156</issn><issn>2296-4878</issn><isbn>3319299905</isbn><isbn>9783319299907</isbn><isbn>9783319299921</isbn><isbn>3319299921</isbn><isbn>9783319299921</isbn><isbn>3319299921</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2016</creationdate><recordtype>book_chapter</recordtype><recordid>eNo1kc1OGzEUhd1SKlKaJ2DjLQtT_4z_lgFRQImERNpuLc_YQ4ZOx4PtgLrjHXhDnqSepGyu5XPPudL9LgAnBJ8RjOU3LRViiBGNqNaaImLUBzAvKivaTiIfwYxSLVClpDoAX94bmH8CM0w5R5hw8RnMNGeC60pVR2Ce0gPGmEgsS52B5_OwHZyNf-Ev2299gqGFdz6F_skPefdb-75F1j2EbsjwdvTR5hAT7Aa4jL7U9WibkrODg4tx7LvG5i4MCeYA88bDZV9Mby-vVyG6MMDLx-2u_xUctrZPfv7_PQY_v1_-uLhGq9urm4vFCm2oFBlVmrZeSSIFq3xZE4sGK6xqzy1RjWyVEJY7p2svFaWCaiecqmktWO0II5wdg9P93I3tzRi7P2VVE2xnrhcrM2kTCi2ZfCLFS_beVIzDvY-mDuF3MgSb6SKmsDfMFMhmh9-Ui5RMtc-MMTwWftn4KdQUetH2zcaO2cdkKi6ZwnSaYwjT7B_op4qG</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Häfner, Dietrich</creator><general>Springer Basel AG</general><general>Springer International Publishing</general><scope>FFUUA</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5152-2277</orcidid></search><sort><creationdate>20160101</creationdate><title>Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation</title><author>Häfner, Dietrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h276t-492fe8717634e48706c0808be5a18c7f866a5dd9be7822629d6d8b2b63bd13153</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Differential equations</topic><topic>Functional analysis &amp; transforms</topic><topic>functional calculus</topic><topic>Klein–Gordon equations</topic><topic>Krein spaces</topic><topic>Mathematical physics</topic><topic>Mathematics</topic><topic>Mourre theory</topic><topic>propagation estimates</topic><topic>resolvent estimates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Häfner, Dietrich</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Häfner, Dietrich</au><au>Raikov, Georgi</au><au>Tiedra de Aldecoa, Rafael</au><au>Mantoiu, Marius</au><au>Tiedra de Aldecoa, Rafael</au><au>Mantoiu, Marius</au><au>Raikov, Georgi</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation</atitle><btitle>Spectral Theory and Mathematical Physics</btitle><seriestitle>Operator Theory: Advances and Applications</seriestitle><date>2016-01-01</date><risdate>2016</risdate><volume>254</volume><spage>133</spage><epage>148</epage><pages>133-148</pages><issn>0255-0156</issn><eissn>2296-4878</eissn><isbn>3319299905</isbn><isbn>9783319299907</isbn><isbn>9783319299921</isbn><isbn>3319299921</isbn><eisbn>9783319299921</eisbn><eisbn>3319299921</eisbn><abstract>The aim of this talk is to describe a generalization of the classical Mourre theorem [M1] to the Krein space setting. Applications to the Klein–Gordon equation are given. The talk is based on joint work with Vladimir Georgescu and Christian Gérard. Details of the proofs can be found in [GGH1] and [GGH2].</abstract><cop>Switzerland</cop><pub>Springer Basel AG</pub><doi>10.1007/978-3-319-29992-1_8</doi><oclcid>953659484</oclcid><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5152-2277</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0255-0156
ispartof Spectral Theory and Mathematical Physics, 2016, Vol.254, p.133-148
issn 0255-0156
2296-4878
language eng
recordid cdi_hal_primary_oai_HAL_hal_01709737v1
source Springer Books
subjects Differential equations
Functional analysis & transforms
functional calculus
Klein–Gordon equations
Krein spaces
Mathematical physics
Mathematics
Mourre theory
propagation estimates
resolvent estimates
title Boundary Values of Resolvents of Self-adjoint Operators in Krein Spaces and Applications to the Klein–Gordon Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Boundary%20Values%20of%20Resolvents%20of%20Self-adjoint%20Operators%20in%20Krein%20Spaces%20and%20Applications%20to%20the%20Klein%E2%80%93Gordon%20Equation&rft.btitle=Spectral%20Theory%20and%20Mathematical%20Physics&rft.au=H%C3%A4fner,%20Dietrich&rft.date=2016-01-01&rft.volume=254&rft.spage=133&rft.epage=148&rft.pages=133-148&rft.issn=0255-0156&rft.eissn=2296-4878&rft.isbn=3319299905&rft.isbn_list=9783319299907&rft.isbn_list=9783319299921&rft.isbn_list=3319299921&rft_id=info:doi/10.1007/978-3-319-29992-1_8&rft_dat=%3Cproquest_hal_p%3EEBC4573802_100_139%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783319299921&rft.eisbn_list=3319299921&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC4573802_100_139&rft_id=info:pmid/&rfr_iscdi=true