A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies

Most of the adhesives used in the marine industry are polymers with a mechanical behaviour which is strongly influenced by the strain rate. Therefore, it is important to predict with accuracy their viscous behaviour. To describe their mechanical behaviour in a bonded joint, a viscoelastic-viscoplast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of adhesion and adhesives 2018-04, Vol.82, p.184-195
Hauptverfasser: Ilioni, A., Badulescu, C., Carrere, N., Davies, P., Thévenet, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue
container_start_page 184
container_title International journal of adhesion and adhesives
container_volume 82
creator Ilioni, A.
Badulescu, C.
Carrere, N.
Davies, P.
Thévenet, D.
description Most of the adhesives used in the marine industry are polymers with a mechanical behaviour which is strongly influenced by the strain rate. Therefore, it is important to predict with accuracy their viscous behaviour. To describe their mechanical behaviour in a bonded joint, a viscoelastic-viscoplastic constitutive law is proposed here. The viscous effects on the elastic behaviour are described using a spectral distribution, which divides the viscous strain as the sum of the strains of several viscous mechanisms, each of them with a different characteristic time and weight. The viscoplastic component of the model permits a better description of the strong non-linear behaviour of the adhesives. The parameters of the constitutive law are obtained using an inverse identification procedure coupled with a finite element model. Two creep tests, in two loading directions, are needed in order to identify the viscoelastic part. The viscoplastic part is identified using monotonic tests. In order to validate the behaviour law and the identification procedure, the adhesive HuntsmanTMAraldite 420A/B has been investigated and modelled. All the experimental tests have been conducted using the modified Arcan device.
doi_str_mv 10.1016/j.ijadhadh.2017.12.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01701201v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143749617302191</els_id><sourcerecordid>2065252891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-b104c4e49cc3c14fe20f745147666241ca172516900b5bfadadc5ff5176a3d343</originalsourceid><addsrcrecordid>eNqFkcFq3DAQhkVpoNskr1AEOfVgVyPLcnzLEpKmsJBLchayNMIyXmsrOYY8QV-7ct3kGhCIGb75mfl_Qr4BK4GB_DGUftC2z6_kDJoSeMlY9Yns4LppCwa8-Ux2DERVNKKVX8jXlAaWQSaqHfmzp4tPJuCo0-xN8a84bQU9BosjnQO1mEz0HVITEU9UT5amOWo_0ahnpOgcmjnRMNG5R3pE0-vJGz3SDnu9-PASaXA0b4jJLzi-Fl2YLFqqU8JjN3pMF-TM6THh5f__nDzf3z3dPhSHx5-_bveHwgjO56IDJoxA0RpTGRAOOXONqEE0UkouwGhoeA2yZayrO6ettqZ2roZG6spWojon3zfdXo_qFP1Rx1cVtFcP-4Nae6sxkH1cILNXG3uK4fcLplkN-ZIpr6c4kzWv-XW7UnKjTAwpRXTvssDUGpAa1FtAag1IAVc5oDx4sw1ivnfxGFUyHieD1sdsp7LBfyTxF2TEneo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065252891</pqid></control><display><type>article</type><title>A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies</title><source>Elsevier ScienceDirect Journals</source><creator>Ilioni, A. ; Badulescu, C. ; Carrere, N. ; Davies, P. ; Thévenet, D.</creator><creatorcontrib>Ilioni, A. ; Badulescu, C. ; Carrere, N. ; Davies, P. ; Thévenet, D.</creatorcontrib><description>Most of the adhesives used in the marine industry are polymers with a mechanical behaviour which is strongly influenced by the strain rate. Therefore, it is important to predict with accuracy their viscous behaviour. To describe their mechanical behaviour in a bonded joint, a viscoelastic-viscoplastic constitutive law is proposed here. The viscous effects on the elastic behaviour are described using a spectral distribution, which divides the viscous strain as the sum of the strains of several viscous mechanisms, each of them with a different characteristic time and weight. The viscoplastic component of the model permits a better description of the strong non-linear behaviour of the adhesives. The parameters of the constitutive law are obtained using an inverse identification procedure coupled with a finite element model. Two creep tests, in two loading directions, are needed in order to identify the viscoelastic part. The viscoplastic part is identified using monotonic tests. In order to validate the behaviour law and the identification procedure, the adhesive HuntsmanTMAraldite 420A/B has been investigated and modelled. All the experimental tests have been conducted using the modified Arcan device.</description><identifier>ISSN: 0143-7496</identifier><identifier>EISSN: 1879-0127</identifier><identifier>DOI: 10.1016/j.ijadhadh.2017.12.003</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Epoxides ; Adhesive bonding ; Adhesives ; Bonded joints ; Creep tests ; D. Creep / mechanical relaxation ; D. Mechanical properties of adhesives ; Elasticity ; Finite element method ; Materials and structures in mechanics ; Materials creep ; Mechanical properties ; Mechanics ; Model testing ; Parameter identification ; Physics ; Polymers ; Strain rate ; Viscoelasticity</subject><ispartof>International journal of adhesion and adhesives, 2018-04, Vol.82, p.184-195</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Apr 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-b104c4e49cc3c14fe20f745147666241ca172516900b5bfadadc5ff5176a3d343</citedby><cites>FETCH-LOGICAL-c422t-b104c4e49cc3c14fe20f745147666241ca172516900b5bfadadc5ff5176a3d343</cites><orcidid>0000-0002-8859-3140 ; 0000-0003-3921-6151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0143749617302191$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://ensta-bretagne.hal.science/hal-01701201$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ilioni, A.</creatorcontrib><creatorcontrib>Badulescu, C.</creatorcontrib><creatorcontrib>Carrere, N.</creatorcontrib><creatorcontrib>Davies, P.</creatorcontrib><creatorcontrib>Thévenet, D.</creatorcontrib><title>A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies</title><title>International journal of adhesion and adhesives</title><description>Most of the adhesives used in the marine industry are polymers with a mechanical behaviour which is strongly influenced by the strain rate. Therefore, it is important to predict with accuracy their viscous behaviour. To describe their mechanical behaviour in a bonded joint, a viscoelastic-viscoplastic constitutive law is proposed here. The viscous effects on the elastic behaviour are described using a spectral distribution, which divides the viscous strain as the sum of the strains of several viscous mechanisms, each of them with a different characteristic time and weight. The viscoplastic component of the model permits a better description of the strong non-linear behaviour of the adhesives. The parameters of the constitutive law are obtained using an inverse identification procedure coupled with a finite element model. Two creep tests, in two loading directions, are needed in order to identify the viscoelastic part. The viscoplastic part is identified using monotonic tests. In order to validate the behaviour law and the identification procedure, the adhesive HuntsmanTMAraldite 420A/B has been investigated and modelled. All the experimental tests have been conducted using the modified Arcan device.</description><subject>A. Epoxides</subject><subject>Adhesive bonding</subject><subject>Adhesives</subject><subject>Bonded joints</subject><subject>Creep tests</subject><subject>D. Creep / mechanical relaxation</subject><subject>D. Mechanical properties of adhesives</subject><subject>Elasticity</subject><subject>Finite element method</subject><subject>Materials and structures in mechanics</subject><subject>Materials creep</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Model testing</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Polymers</subject><subject>Strain rate</subject><subject>Viscoelasticity</subject><issn>0143-7496</issn><issn>1879-0127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkcFq3DAQhkVpoNskr1AEOfVgVyPLcnzLEpKmsJBLchayNMIyXmsrOYY8QV-7ct3kGhCIGb75mfl_Qr4BK4GB_DGUftC2z6_kDJoSeMlY9Yns4LppCwa8-Ux2DERVNKKVX8jXlAaWQSaqHfmzp4tPJuCo0-xN8a84bQU9BosjnQO1mEz0HVITEU9UT5amOWo_0ahnpOgcmjnRMNG5R3pE0-vJGz3SDnu9-PASaXA0b4jJLzi-Fl2YLFqqU8JjN3pMF-TM6THh5f__nDzf3z3dPhSHx5-_bveHwgjO56IDJoxA0RpTGRAOOXONqEE0UkouwGhoeA2yZayrO6ettqZ2roZG6spWojon3zfdXo_qFP1Rx1cVtFcP-4Nae6sxkH1cILNXG3uK4fcLplkN-ZIpr6c4kzWv-XW7UnKjTAwpRXTvssDUGpAa1FtAag1IAVc5oDx4sw1ivnfxGFUyHieD1sdsp7LBfyTxF2TEneo</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Ilioni, A.</creator><creator>Badulescu, C.</creator><creator>Carrere, N.</creator><creator>Davies, P.</creator><creator>Thévenet, D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8859-3140</orcidid><orcidid>https://orcid.org/0000-0003-3921-6151</orcidid></search><sort><creationdate>201804</creationdate><title>A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies</title><author>Ilioni, A. ; Badulescu, C. ; Carrere, N. ; Davies, P. ; Thévenet, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-b104c4e49cc3c14fe20f745147666241ca172516900b5bfadadc5ff5176a3d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A. Epoxides</topic><topic>Adhesive bonding</topic><topic>Adhesives</topic><topic>Bonded joints</topic><topic>Creep tests</topic><topic>D. Creep / mechanical relaxation</topic><topic>D. Mechanical properties of adhesives</topic><topic>Elasticity</topic><topic>Finite element method</topic><topic>Materials and structures in mechanics</topic><topic>Materials creep</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Model testing</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Polymers</topic><topic>Strain rate</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilioni, A.</creatorcontrib><creatorcontrib>Badulescu, C.</creatorcontrib><creatorcontrib>Carrere, N.</creatorcontrib><creatorcontrib>Davies, P.</creatorcontrib><creatorcontrib>Thévenet, D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of adhesion and adhesives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilioni, A.</au><au>Badulescu, C.</au><au>Carrere, N.</au><au>Davies, P.</au><au>Thévenet, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies</atitle><jtitle>International journal of adhesion and adhesives</jtitle><date>2018-04</date><risdate>2018</risdate><volume>82</volume><spage>184</spage><epage>195</epage><pages>184-195</pages><issn>0143-7496</issn><eissn>1879-0127</eissn><abstract>Most of the adhesives used in the marine industry are polymers with a mechanical behaviour which is strongly influenced by the strain rate. Therefore, it is important to predict with accuracy their viscous behaviour. To describe their mechanical behaviour in a bonded joint, a viscoelastic-viscoplastic constitutive law is proposed here. The viscous effects on the elastic behaviour are described using a spectral distribution, which divides the viscous strain as the sum of the strains of several viscous mechanisms, each of them with a different characteristic time and weight. The viscoplastic component of the model permits a better description of the strong non-linear behaviour of the adhesives. The parameters of the constitutive law are obtained using an inverse identification procedure coupled with a finite element model. Two creep tests, in two loading directions, are needed in order to identify the viscoelastic part. The viscoplastic part is identified using monotonic tests. In order to validate the behaviour law and the identification procedure, the adhesive HuntsmanTMAraldite 420A/B has been investigated and modelled. All the experimental tests have been conducted using the modified Arcan device.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijadhadh.2017.12.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8859-3140</orcidid><orcidid>https://orcid.org/0000-0003-3921-6151</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-7496
ispartof International journal of adhesion and adhesives, 2018-04, Vol.82, p.184-195
issn 0143-7496
1879-0127
language eng
recordid cdi_hal_primary_oai_HAL_hal_01701201v1
source Elsevier ScienceDirect Journals
subjects A. Epoxides
Adhesive bonding
Adhesives
Bonded joints
Creep tests
D. Creep / mechanical relaxation
D. Mechanical properties of adhesives
Elasticity
Finite element method
Materials and structures in mechanics
Materials creep
Mechanical properties
Mechanics
Model testing
Parameter identification
Physics
Polymers
Strain rate
Viscoelasticity
title A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20viscoelastic-viscoplastic%20model%20to%20describe%20creep%20and%20strain%20rate%20effects%20on%20the%20mechanical%20behaviour%20of%20adhesively-bonded%20assemblies&rft.jtitle=International%20journal%20of%20adhesion%20and%20adhesives&rft.au=Ilioni,%20A.&rft.date=2018-04&rft.volume=82&rft.spage=184&rft.epage=195&rft.pages=184-195&rft.issn=0143-7496&rft.eissn=1879-0127&rft_id=info:doi/10.1016/j.ijadhadh.2017.12.003&rft_dat=%3Cproquest_hal_p%3E2065252891%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065252891&rft_id=info:pmid/&rft_els_id=S0143749617302191&rfr_iscdi=true