A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies
Most of the adhesives used in the marine industry are polymers with a mechanical behaviour which is strongly influenced by the strain rate. Therefore, it is important to predict with accuracy their viscous behaviour. To describe their mechanical behaviour in a bonded joint, a viscoelastic-viscoplast...
Gespeichert in:
Veröffentlicht in: | International journal of adhesion and adhesives 2018-04, Vol.82, p.184-195 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | |
container_start_page | 184 |
container_title | International journal of adhesion and adhesives |
container_volume | 82 |
creator | Ilioni, A. Badulescu, C. Carrere, N. Davies, P. Thévenet, D. |
description | Most of the adhesives used in the marine industry are polymers with a mechanical behaviour which is strongly influenced by the strain rate. Therefore, it is important to predict with accuracy their viscous behaviour. To describe their mechanical behaviour in a bonded joint, a viscoelastic-viscoplastic constitutive law is proposed here. The viscous effects on the elastic behaviour are described using a spectral distribution, which divides the viscous strain as the sum of the strains of several viscous mechanisms, each of them with a different characteristic time and weight. The viscoplastic component of the model permits a better description of the strong non-linear behaviour of the adhesives. The parameters of the constitutive law are obtained using an inverse identification procedure coupled with a finite element model. Two creep tests, in two loading directions, are needed in order to identify the viscoelastic part. The viscoplastic part is identified using monotonic tests. In order to validate the behaviour law and the identification procedure, the adhesive HuntsmanTMAraldite 420A/B has been investigated and modelled. All the experimental tests have been conducted using the modified Arcan device. |
doi_str_mv | 10.1016/j.ijadhadh.2017.12.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01701201v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0143749617302191</els_id><sourcerecordid>2065252891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-b104c4e49cc3c14fe20f745147666241ca172516900b5bfadadc5ff5176a3d343</originalsourceid><addsrcrecordid>eNqFkcFq3DAQhkVpoNskr1AEOfVgVyPLcnzLEpKmsJBLchayNMIyXmsrOYY8QV-7ct3kGhCIGb75mfl_Qr4BK4GB_DGUftC2z6_kDJoSeMlY9Yns4LppCwa8-Ux2DERVNKKVX8jXlAaWQSaqHfmzp4tPJuCo0-xN8a84bQU9BosjnQO1mEz0HVITEU9UT5amOWo_0ahnpOgcmjnRMNG5R3pE0-vJGz3SDnu9-PASaXA0b4jJLzi-Fl2YLFqqU8JjN3pMF-TM6THh5f__nDzf3z3dPhSHx5-_bveHwgjO56IDJoxA0RpTGRAOOXONqEE0UkouwGhoeA2yZayrO6ettqZ2roZG6spWojon3zfdXo_qFP1Rx1cVtFcP-4Nae6sxkH1cILNXG3uK4fcLplkN-ZIpr6c4kzWv-XW7UnKjTAwpRXTvssDUGpAa1FtAag1IAVc5oDx4sw1ivnfxGFUyHieD1sdsp7LBfyTxF2TEneo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065252891</pqid></control><display><type>article</type><title>A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies</title><source>Elsevier ScienceDirect Journals</source><creator>Ilioni, A. ; Badulescu, C. ; Carrere, N. ; Davies, P. ; Thévenet, D.</creator><creatorcontrib>Ilioni, A. ; Badulescu, C. ; Carrere, N. ; Davies, P. ; Thévenet, D.</creatorcontrib><description>Most of the adhesives used in the marine industry are polymers with a mechanical behaviour which is strongly influenced by the strain rate. Therefore, it is important to predict with accuracy their viscous behaviour. To describe their mechanical behaviour in a bonded joint, a viscoelastic-viscoplastic constitutive law is proposed here. The viscous effects on the elastic behaviour are described using a spectral distribution, which divides the viscous strain as the sum of the strains of several viscous mechanisms, each of them with a different characteristic time and weight. The viscoplastic component of the model permits a better description of the strong non-linear behaviour of the adhesives. The parameters of the constitutive law are obtained using an inverse identification procedure coupled with a finite element model. Two creep tests, in two loading directions, are needed in order to identify the viscoelastic part. The viscoplastic part is identified using monotonic tests. In order to validate the behaviour law and the identification procedure, the adhesive HuntsmanTMAraldite 420A/B has been investigated and modelled. All the experimental tests have been conducted using the modified Arcan device.</description><identifier>ISSN: 0143-7496</identifier><identifier>EISSN: 1879-0127</identifier><identifier>DOI: 10.1016/j.ijadhadh.2017.12.003</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Epoxides ; Adhesive bonding ; Adhesives ; Bonded joints ; Creep tests ; D. Creep / mechanical relaxation ; D. Mechanical properties of adhesives ; Elasticity ; Finite element method ; Materials and structures in mechanics ; Materials creep ; Mechanical properties ; Mechanics ; Model testing ; Parameter identification ; Physics ; Polymers ; Strain rate ; Viscoelasticity</subject><ispartof>International journal of adhesion and adhesives, 2018-04, Vol.82, p.184-195</ispartof><rights>2017</rights><rights>Copyright Elsevier BV Apr 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-b104c4e49cc3c14fe20f745147666241ca172516900b5bfadadc5ff5176a3d343</citedby><cites>FETCH-LOGICAL-c422t-b104c4e49cc3c14fe20f745147666241ca172516900b5bfadadc5ff5176a3d343</cites><orcidid>0000-0002-8859-3140 ; 0000-0003-3921-6151</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0143749617302191$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://ensta-bretagne.hal.science/hal-01701201$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ilioni, A.</creatorcontrib><creatorcontrib>Badulescu, C.</creatorcontrib><creatorcontrib>Carrere, N.</creatorcontrib><creatorcontrib>Davies, P.</creatorcontrib><creatorcontrib>Thévenet, D.</creatorcontrib><title>A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies</title><title>International journal of adhesion and adhesives</title><description>Most of the adhesives used in the marine industry are polymers with a mechanical behaviour which is strongly influenced by the strain rate. Therefore, it is important to predict with accuracy their viscous behaviour. To describe their mechanical behaviour in a bonded joint, a viscoelastic-viscoplastic constitutive law is proposed here. The viscous effects on the elastic behaviour are described using a spectral distribution, which divides the viscous strain as the sum of the strains of several viscous mechanisms, each of them with a different characteristic time and weight. The viscoplastic component of the model permits a better description of the strong non-linear behaviour of the adhesives. The parameters of the constitutive law are obtained using an inverse identification procedure coupled with a finite element model. Two creep tests, in two loading directions, are needed in order to identify the viscoelastic part. The viscoplastic part is identified using monotonic tests. In order to validate the behaviour law and the identification procedure, the adhesive HuntsmanTMAraldite 420A/B has been investigated and modelled. All the experimental tests have been conducted using the modified Arcan device.</description><subject>A. Epoxides</subject><subject>Adhesive bonding</subject><subject>Adhesives</subject><subject>Bonded joints</subject><subject>Creep tests</subject><subject>D. Creep / mechanical relaxation</subject><subject>D. Mechanical properties of adhesives</subject><subject>Elasticity</subject><subject>Finite element method</subject><subject>Materials and structures in mechanics</subject><subject>Materials creep</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Model testing</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Polymers</subject><subject>Strain rate</subject><subject>Viscoelasticity</subject><issn>0143-7496</issn><issn>1879-0127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkcFq3DAQhkVpoNskr1AEOfVgVyPLcnzLEpKmsJBLchayNMIyXmsrOYY8QV-7ct3kGhCIGb75mfl_Qr4BK4GB_DGUftC2z6_kDJoSeMlY9Yns4LppCwa8-Ux2DERVNKKVX8jXlAaWQSaqHfmzp4tPJuCo0-xN8a84bQU9BosjnQO1mEz0HVITEU9UT5amOWo_0ahnpOgcmjnRMNG5R3pE0-vJGz3SDnu9-PASaXA0b4jJLzi-Fl2YLFqqU8JjN3pMF-TM6THh5f__nDzf3z3dPhSHx5-_bveHwgjO56IDJoxA0RpTGRAOOXONqEE0UkouwGhoeA2yZayrO6ettqZ2roZG6spWojon3zfdXo_qFP1Rx1cVtFcP-4Nae6sxkH1cILNXG3uK4fcLplkN-ZIpr6c4kzWv-XW7UnKjTAwpRXTvssDUGpAa1FtAag1IAVc5oDx4sw1ivnfxGFUyHieD1sdsp7LBfyTxF2TEneo</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Ilioni, A.</creator><creator>Badulescu, C.</creator><creator>Carrere, N.</creator><creator>Davies, P.</creator><creator>Thévenet, D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8859-3140</orcidid><orcidid>https://orcid.org/0000-0003-3921-6151</orcidid></search><sort><creationdate>201804</creationdate><title>A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies</title><author>Ilioni, A. ; Badulescu, C. ; Carrere, N. ; Davies, P. ; Thévenet, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-b104c4e49cc3c14fe20f745147666241ca172516900b5bfadadc5ff5176a3d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>A. Epoxides</topic><topic>Adhesive bonding</topic><topic>Adhesives</topic><topic>Bonded joints</topic><topic>Creep tests</topic><topic>D. Creep / mechanical relaxation</topic><topic>D. Mechanical properties of adhesives</topic><topic>Elasticity</topic><topic>Finite element method</topic><topic>Materials and structures in mechanics</topic><topic>Materials creep</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Model testing</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Polymers</topic><topic>Strain rate</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilioni, A.</creatorcontrib><creatorcontrib>Badulescu, C.</creatorcontrib><creatorcontrib>Carrere, N.</creatorcontrib><creatorcontrib>Davies, P.</creatorcontrib><creatorcontrib>Thévenet, D.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of adhesion and adhesives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilioni, A.</au><au>Badulescu, C.</au><au>Carrere, N.</au><au>Davies, P.</au><au>Thévenet, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies</atitle><jtitle>International journal of adhesion and adhesives</jtitle><date>2018-04</date><risdate>2018</risdate><volume>82</volume><spage>184</spage><epage>195</epage><pages>184-195</pages><issn>0143-7496</issn><eissn>1879-0127</eissn><abstract>Most of the adhesives used in the marine industry are polymers with a mechanical behaviour which is strongly influenced by the strain rate. Therefore, it is important to predict with accuracy their viscous behaviour. To describe their mechanical behaviour in a bonded joint, a viscoelastic-viscoplastic constitutive law is proposed here. The viscous effects on the elastic behaviour are described using a spectral distribution, which divides the viscous strain as the sum of the strains of several viscous mechanisms, each of them with a different characteristic time and weight. The viscoplastic component of the model permits a better description of the strong non-linear behaviour of the adhesives. The parameters of the constitutive law are obtained using an inverse identification procedure coupled with a finite element model. Two creep tests, in two loading directions, are needed in order to identify the viscoelastic part. The viscoplastic part is identified using monotonic tests. In order to validate the behaviour law and the identification procedure, the adhesive HuntsmanTMAraldite 420A/B has been investigated and modelled. All the experimental tests have been conducted using the modified Arcan device.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijadhadh.2017.12.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8859-3140</orcidid><orcidid>https://orcid.org/0000-0003-3921-6151</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-7496 |
ispartof | International journal of adhesion and adhesives, 2018-04, Vol.82, p.184-195 |
issn | 0143-7496 1879-0127 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01701201v1 |
source | Elsevier ScienceDirect Journals |
subjects | A. Epoxides Adhesive bonding Adhesives Bonded joints Creep tests D. Creep / mechanical relaxation D. Mechanical properties of adhesives Elasticity Finite element method Materials and structures in mechanics Materials creep Mechanical properties Mechanics Model testing Parameter identification Physics Polymers Strain rate Viscoelasticity |
title | A viscoelastic-viscoplastic model to describe creep and strain rate effects on the mechanical behaviour of adhesively-bonded assemblies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20viscoelastic-viscoplastic%20model%20to%20describe%20creep%20and%20strain%20rate%20effects%20on%20the%20mechanical%20behaviour%20of%20adhesively-bonded%20assemblies&rft.jtitle=International%20journal%20of%20adhesion%20and%20adhesives&rft.au=Ilioni,%20A.&rft.date=2018-04&rft.volume=82&rft.spage=184&rft.epage=195&rft.pages=184-195&rft.issn=0143-7496&rft.eissn=1879-0127&rft_id=info:doi/10.1016/j.ijadhadh.2017.12.003&rft_dat=%3Cproquest_hal_p%3E2065252891%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065252891&rft_id=info:pmid/&rft_els_id=S0143749617302191&rfr_iscdi=true |