Energy-Efficient Optimization for Concurrent Compositions of WSN Services

Sharing the infrastructure of wireless sensor networks (WSNs) for achieving concurrent requests becomes a trend nowadays, where a relatively complex request should be satisfied through aggregating complementary functionalities provided by contiguous sensor nodes contained in a certain network region...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2017-01, Vol.5, p.19994-20008
Hauptverfasser: Zhou, Zhangbing, Xu, Jiabei, Zhang, Zhenjiang, Lei, Fei, Fang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20008
container_issue
container_start_page 19994
container_title IEEE access
container_volume 5
creator Zhou, Zhangbing
Xu, Jiabei
Zhang, Zhenjiang
Lei, Fei
Fang, Wei
description Sharing the infrastructure of wireless sensor networks (WSNs) for achieving concurrent requests becomes a trend nowadays, where a relatively complex request should be satisfied through aggregating complementary functionalities provided by contiguous sensor nodes contained in a certain network region. To address this challenge, this paper proposes a multi-requests cooperative-integrating mechanism leveraging service-oriented WSNs. Specifically, a sensor node is encapsulated with one or multiple WSN services, which capture various functionalities provided by this sensor node. These WSN services can be categorized into service classes, where their functionalities are the main concern. Candidate service class chains are generated independently with respect to concurrent requests represented in plain text. The selection of candidate WSN services for the instantiation of certain service classes can be reduced to a multi-objective and multi-constraints optimization problem, where the spatial and temporal-constraints, and energy efficiency of the network, are the factors to be considered. This combinational optimization problem is solved through adopting heuristic algorithms. Experimental results show that this technique improves the shareability of WSN services among concurrent requests, and reduces the energy consumption of the network significantly, especially when the spatial, temporal, and functional overlap between concurrent requests is relatively large.
doi_str_mv 10.1109/ACCESS.2017.2752756
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01698627v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8038775</ieee_id><doaj_id>oai_doaj_org_article_a01c8a50e540460c93043d51c8e924cf</doaj_id><sourcerecordid>2455946348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-8d3f5a834f9c1088da864e0397a8e834635a91fceb668afbe1d904813fcef3f93</originalsourceid><addsrcrecordid>eNpVkV9LwzAUxYsoKHOfwJeCTz50Js2fJo-jTDcY-jDFxxDTG83Ympl0A_30plaGhkAuv3vuIcnJsiuMJhgjeTut69lqNSkRriZlxdLmJ9lFibksCCP89E99no1jXKO0REKsusgWsxbC22cxs9YZB22XP-46t3VfunO-za0Pee1bsw-h79V-u_PR9a2Ye5u_rB7yFYSDMxAvszOrNxHGv-coe76bPdXzYvl4v6iny8JQWnaFaIhlWhBqpcFIiEYLTgERWWkBCXPCtMTWwCvnQttXwI1EVGCSkCVWklG2GHwbr9dqF9xWh0_ltVM_wIc3pUPnzAaURtgIzRAwiihHRhJEScMSBFlSY5PXzeD1rjf_rObTpeoZSt8keFkdcNJeD9pd8B97iJ1a-31o01NVSRmT6eZUJBUZVCb4GAPYoy1Gqo9LDXGpPi71G1eauhqmHAAcJwQioqoY-QZO8I8j</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455946348</pqid></control><display><type>article</type><title>Energy-Efficient Optimization for Concurrent Compositions of WSN Services</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhou, Zhangbing ; Xu, Jiabei ; Zhang, Zhenjiang ; Lei, Fei ; Fang, Wei</creator><creatorcontrib>Zhou, Zhangbing ; Xu, Jiabei ; Zhang, Zhenjiang ; Lei, Fei ; Fang, Wei</creatorcontrib><description>Sharing the infrastructure of wireless sensor networks (WSNs) for achieving concurrent requests becomes a trend nowadays, where a relatively complex request should be satisfied through aggregating complementary functionalities provided by contiguous sensor nodes contained in a certain network region. To address this challenge, this paper proposes a multi-requests cooperative-integrating mechanism leveraging service-oriented WSNs. Specifically, a sensor node is encapsulated with one or multiple WSN services, which capture various functionalities provided by this sensor node. These WSN services can be categorized into service classes, where their functionalities are the main concern. Candidate service class chains are generated independently with respect to concurrent requests represented in plain text. The selection of candidate WSN services for the instantiation of certain service classes can be reduced to a multi-objective and multi-constraints optimization problem, where the spatial and temporal-constraints, and energy efficiency of the network, are the factors to be considered. This combinational optimization problem is solved through adopting heuristic algorithms. Experimental results show that this technique improves the shareability of WSN services among concurrent requests, and reduces the energy consumption of the network significantly, especially when the spatial, temporal, and functional overlap between concurrent requests is relatively large.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2752756</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computer Science ; Electronic mail ; Energy consumption ; Energy efficiency ; Geology ; Mathematical model ; Multiple objective analysis ; multiple requests cooperative integration ; Optimization ; Sensors ; Software Engineering ; spatial and temporal constraints ; Web services ; Wireless networks ; Wireless sensor networks ; WSN service composition</subject><ispartof>IEEE access, 2017-01, Vol.5, p.19994-20008</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-8d3f5a834f9c1088da864e0397a8e834635a91fceb668afbe1d904813fcef3f93</citedby><cites>FETCH-LOGICAL-c442t-8d3f5a834f9c1088da864e0397a8e834635a91fceb668afbe1d904813fcef3f93</cites><orcidid>0000-0002-3195-2253 ; 0000-0003-0217-3012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8038775$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,2102,27633,27924,27925,54933</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01698627$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Zhangbing</creatorcontrib><creatorcontrib>Xu, Jiabei</creatorcontrib><creatorcontrib>Zhang, Zhenjiang</creatorcontrib><creatorcontrib>Lei, Fei</creatorcontrib><creatorcontrib>Fang, Wei</creatorcontrib><title>Energy-Efficient Optimization for Concurrent Compositions of WSN Services</title><title>IEEE access</title><addtitle>Access</addtitle><description>Sharing the infrastructure of wireless sensor networks (WSNs) for achieving concurrent requests becomes a trend nowadays, where a relatively complex request should be satisfied through aggregating complementary functionalities provided by contiguous sensor nodes contained in a certain network region. To address this challenge, this paper proposes a multi-requests cooperative-integrating mechanism leveraging service-oriented WSNs. Specifically, a sensor node is encapsulated with one or multiple WSN services, which capture various functionalities provided by this sensor node. These WSN services can be categorized into service classes, where their functionalities are the main concern. Candidate service class chains are generated independently with respect to concurrent requests represented in plain text. The selection of candidate WSN services for the instantiation of certain service classes can be reduced to a multi-objective and multi-constraints optimization problem, where the spatial and temporal-constraints, and energy efficiency of the network, are the factors to be considered. This combinational optimization problem is solved through adopting heuristic algorithms. Experimental results show that this technique improves the shareability of WSN services among concurrent requests, and reduces the energy consumption of the network significantly, especially when the spatial, temporal, and functional overlap between concurrent requests is relatively large.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Electronic mail</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Geology</subject><subject>Mathematical model</subject><subject>Multiple objective analysis</subject><subject>multiple requests cooperative integration</subject><subject>Optimization</subject><subject>Sensors</subject><subject>Software Engineering</subject><subject>spatial and temporal constraints</subject><subject>Web services</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><subject>WSN service composition</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkV9LwzAUxYsoKHOfwJeCTz50Js2fJo-jTDcY-jDFxxDTG83Ympl0A_30plaGhkAuv3vuIcnJsiuMJhgjeTut69lqNSkRriZlxdLmJ9lFibksCCP89E99no1jXKO0REKsusgWsxbC22cxs9YZB22XP-46t3VfunO-za0Pee1bsw-h79V-u_PR9a2Ye5u_rB7yFYSDMxAvszOrNxHGv-coe76bPdXzYvl4v6iny8JQWnaFaIhlWhBqpcFIiEYLTgERWWkBCXPCtMTWwCvnQttXwI1EVGCSkCVWklG2GHwbr9dqF9xWh0_ltVM_wIc3pUPnzAaURtgIzRAwiihHRhJEScMSBFlSY5PXzeD1rjf_rObTpeoZSt8keFkdcNJeD9pd8B97iJ1a-31o01NVSRmT6eZUJBUZVCb4GAPYoy1Gqo9LDXGpPi71G1eauhqmHAAcJwQioqoY-QZO8I8j</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zhou, Zhangbing</creator><creator>Xu, Jiabei</creator><creator>Zhang, Zhenjiang</creator><creator>Lei, Fei</creator><creator>Fang, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3195-2253</orcidid><orcidid>https://orcid.org/0000-0003-0217-3012</orcidid></search><sort><creationdate>20170101</creationdate><title>Energy-Efficient Optimization for Concurrent Compositions of WSN Services</title><author>Zhou, Zhangbing ; Xu, Jiabei ; Zhang, Zhenjiang ; Lei, Fei ; Fang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-8d3f5a834f9c1088da864e0397a8e834635a91fceb668afbe1d904813fcef3f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Electronic mail</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Geology</topic><topic>Mathematical model</topic><topic>Multiple objective analysis</topic><topic>multiple requests cooperative integration</topic><topic>Optimization</topic><topic>Sensors</topic><topic>Software Engineering</topic><topic>spatial and temporal constraints</topic><topic>Web services</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><topic>WSN service composition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhangbing</creatorcontrib><creatorcontrib>Xu, Jiabei</creatorcontrib><creatorcontrib>Zhang, Zhenjiang</creatorcontrib><creatorcontrib>Lei, Fei</creatorcontrib><creatorcontrib>Fang, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhangbing</au><au>Xu, Jiabei</au><au>Zhang, Zhenjiang</au><au>Lei, Fei</au><au>Fang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Optimization for Concurrent Compositions of WSN Services</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><spage>19994</spage><epage>20008</epage><pages>19994-20008</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Sharing the infrastructure of wireless sensor networks (WSNs) for achieving concurrent requests becomes a trend nowadays, where a relatively complex request should be satisfied through aggregating complementary functionalities provided by contiguous sensor nodes contained in a certain network region. To address this challenge, this paper proposes a multi-requests cooperative-integrating mechanism leveraging service-oriented WSNs. Specifically, a sensor node is encapsulated with one or multiple WSN services, which capture various functionalities provided by this sensor node. These WSN services can be categorized into service classes, where their functionalities are the main concern. Candidate service class chains are generated independently with respect to concurrent requests represented in plain text. The selection of candidate WSN services for the instantiation of certain service classes can be reduced to a multi-objective and multi-constraints optimization problem, where the spatial and temporal-constraints, and energy efficiency of the network, are the factors to be considered. This combinational optimization problem is solved through adopting heuristic algorithms. Experimental results show that this technique improves the shareability of WSN services among concurrent requests, and reduces the energy consumption of the network significantly, especially when the spatial, temporal, and functional overlap between concurrent requests is relatively large.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2752756</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3195-2253</orcidid><orcidid>https://orcid.org/0000-0003-0217-3012</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2017-01, Vol.5, p.19994-20008
issn 2169-3536
2169-3536
language eng
recordid cdi_hal_primary_oai_HAL_hal_01698627v1
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Computer Science
Electronic mail
Energy consumption
Energy efficiency
Geology
Mathematical model
Multiple objective analysis
multiple requests cooperative integration
Optimization
Sensors
Software Engineering
spatial and temporal constraints
Web services
Wireless networks
Wireless sensor networks
WSN service composition
title Energy-Efficient Optimization for Concurrent Compositions of WSN Services
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Optimization%20for%20Concurrent%20Compositions%20of%20WSN%20Services&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Zhangbing&rft.date=2017-01-01&rft.volume=5&rft.spage=19994&rft.epage=20008&rft.pages=19994-20008&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2752756&rft_dat=%3Cproquest_hal_p%3E2455946348%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455946348&rft_id=info:pmid/&rft_ieee_id=8038775&rft_doaj_id=oai_doaj_org_article_a01c8a50e540460c93043d51c8e924cf&rfr_iscdi=true