Increased Susceptibility of Pseudomonas aeruginosa to Macrolides and Ketolides in Eukaryotic Cell Culture Media and Biological Fluids Due to Decreased Expression of oprM and Increased Outer-Membrane Permeability

Background. Macrolides show high minimum inhibitory concentrations (MICs) against Pseudomonas aeruginosa when tested in recommended media (cation-adjusted Muller-Hinton broth [CA-MHB]). Nevertheless, azithromycin is successfully used in cystic fibrosis patients, supposedly because of "nonantibi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical infectious diseases 2012-08, Vol.55 (4), p.534-542
Hauptverfasser: Buyck, Julien M., Plésiat, Patrick, Traore, H., Vanderbist, F., Tulkens, Paul M., Van Bambeke, Françoise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 4
container_start_page 534
container_title Clinical infectious diseases
container_volume 55
creator Buyck, Julien M.
Plésiat, Patrick
Traore, H.
Vanderbist, F.
Tulkens, Paul M.
Van Bambeke, Françoise
description Background. Macrolides show high minimum inhibitory concentrations (MICs) against Pseudomonas aeruginosa when tested in recommended media (cation-adjusted Muller-Hinton broth [CA-MHB]). Nevertheless, azithromycin is successfully used in cystic fibrosis patients, supposedly because of "nonantibiotic effects." Methods. CA-MHB and Roswell Park Memorial Institute (RPMI) 1640 medium (used for growing eukaryotic cells) were compared for measuring azithromycin MICs (with or without Phe-Arg-β-naphthylamide [PAβN], an efflux inhibitor), [ 14 C]-clarithromycin accumulation, azithromycin-induced protein synthesis inhibition, oprM (encoding the outer-membrane protein coupled with MexAB and MexXY efflux systems) expression, outer-membrane permeability (tested with 1-N-phenylnaphthylamine and nitrocefin), and synergy (determined by checkerboard assay) between azithromycin and outer-membrane disrupting agents. Key experiments were repeated with CA-MHB supplemented with serum, mouse bronchoalveolar lavage fluid, other macrolides, and other gram-negative bacteria. Results. Azithromycin MICs were ≥128 mg/L in CA-MHB, compared with 1-16 mg/L in RPMI 1640 medium, CA-MHB supplemented with serum, or bronchoalveolar lavage fluid (repeated for RPMI 1640 medium with clarithromycin, other macrolides, and other gram-negative bacteria). [ 14 C]-clarithromycin accumulation was 2.2-fold higher in RPMI 1640 medium, compared with CA-MHB. Inhibition of >95% of protein synthesis was obtained with azithromycin at 16 mg/L in RPMI 1640 medium, compared with >512 mg/L in CA-MHB. Strains not expressing oprM showed an MIC of 4 mg/L in CA-MHB. PAβN decreased MICs in CA-MHB but not in RPMI 1640 medium. Real-time polymerase chain reaction showed downregulation of oprM by azithromycin in RPMI 1640 medium. Outer-membrane permeability was 3-4.5 times higher in RPMI 1640 medium or bronchoalveolar lavage fluid, compared with CA-MHB. Azithromycin combined with outer-membrane disrupting agents were synergistic in CA-MHB but indifferent in RPMI 1640 medium. Conclusions. Macrolides show antimicrobial activity against P. aeruginosa in eukaryotic media through increased uptake and reduced efflux. These data may help explain the clinical efficacy of macrolides against pseudomonal infections.
doi_str_mv 10.1093/cid/cis473
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01695413v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23249841</jstor_id><sourcerecordid>23249841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-dc48e37846539692abd7fca0ac72ebd918f7a031b056b85950fdcf3d0caa92033</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw4Q6yhJAAacGO49g-lu2WVuyqlYBz5NiT4sWJFztG9Hfyh_Butl2JEwfLX8-M3pl5i-I5we8JlvSDtiavWHH6oDgmjPJZzSR5mM-YiVklqDgqnsS4xpgQgdnj4qgsGaeC4ePiz-WgA6gIBn1JUcNmtK11drxFvkPXEZLxvR9URApCurGDjwqNHq2UDt5ZA_ljMOgzjPubHdAi_VDh1o9Wozk4h-bJjSkAWoGxaod_tN75G6uVQ-cuWRPRWYJt2jO4E7P4vQkQo_XDVojfhNUu8qD2Ko0QZivo26AGQNcQelCT9KfFo065CM_2-0nx7XzxdX4xW159upyfLme64nicGV0JoFxUNaOylqVqDe-0wkrzElojiei4wpS0mNWtYJLhzuiOGqyVkiWm9KR4O-X9rlyzCbbPZTde2ebidNls3zCpJasI_UUy-2ZiN8H_TBDHpre53c5l8T7FhnBe14xh8R8oLnnNsxyW0Vf_oGufwpCL3lFCUlnKTL2bqDyzGAN092IJbrYOarKDmslBGX65T5naHsw9emeZDLzeAyrmCXa5_Tn0wNUlpZRXmXsxces4-nD4p2UlRW7KXwIT2zo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027893929</pqid></control><display><type>article</type><title>Increased Susceptibility of Pseudomonas aeruginosa to Macrolides and Ketolides in Eukaryotic Cell Culture Media and Biological Fluids Due to Decreased Expression of oprM and Increased Outer-Membrane Permeability</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Buyck, Julien M. ; Plésiat, Patrick ; Traore, H. ; Vanderbist, F. ; Tulkens, Paul M. ; Van Bambeke, Françoise</creator><creatorcontrib>Buyck, Julien M. ; Plésiat, Patrick ; Traore, H. ; Vanderbist, F. ; Tulkens, Paul M. ; Van Bambeke, Françoise</creatorcontrib><description>Background. Macrolides show high minimum inhibitory concentrations (MICs) against Pseudomonas aeruginosa when tested in recommended media (cation-adjusted Muller-Hinton broth [CA-MHB]). Nevertheless, azithromycin is successfully used in cystic fibrosis patients, supposedly because of "nonantibiotic effects." Methods. CA-MHB and Roswell Park Memorial Institute (RPMI) 1640 medium (used for growing eukaryotic cells) were compared for measuring azithromycin MICs (with or without Phe-Arg-β-naphthylamide [PAβN], an efflux inhibitor), [ 14 C]-clarithromycin accumulation, azithromycin-induced protein synthesis inhibition, oprM (encoding the outer-membrane protein coupled with MexAB and MexXY efflux systems) expression, outer-membrane permeability (tested with 1-N-phenylnaphthylamine and nitrocefin), and synergy (determined by checkerboard assay) between azithromycin and outer-membrane disrupting agents. Key experiments were repeated with CA-MHB supplemented with serum, mouse bronchoalveolar lavage fluid, other macrolides, and other gram-negative bacteria. Results. Azithromycin MICs were ≥128 mg/L in CA-MHB, compared with 1-16 mg/L in RPMI 1640 medium, CA-MHB supplemented with serum, or bronchoalveolar lavage fluid (repeated for RPMI 1640 medium with clarithromycin, other macrolides, and other gram-negative bacteria). [ 14 C]-clarithromycin accumulation was 2.2-fold higher in RPMI 1640 medium, compared with CA-MHB. Inhibition of &gt;95% of protein synthesis was obtained with azithromycin at 16 mg/L in RPMI 1640 medium, compared with &gt;512 mg/L in CA-MHB. Strains not expressing oprM showed an MIC of 4 mg/L in CA-MHB. PAβN decreased MICs in CA-MHB but not in RPMI 1640 medium. Real-time polymerase chain reaction showed downregulation of oprM by azithromycin in RPMI 1640 medium. Outer-membrane permeability was 3-4.5 times higher in RPMI 1640 medium or bronchoalveolar lavage fluid, compared with CA-MHB. Azithromycin combined with outer-membrane disrupting agents were synergistic in CA-MHB but indifferent in RPMI 1640 medium. Conclusions. Macrolides show antimicrobial activity against P. aeruginosa in eukaryotic media through increased uptake and reduced efflux. These data may help explain the clinical efficacy of macrolides against pseudomonal infections.</description><identifier>ISSN: 1058-4838</identifier><identifier>EISSN: 1537-6591</identifier><identifier>DOI: 10.1093/cid/cis473</identifier><identifier>PMID: 22573850</identifier><identifier>CODEN: CIDIEL</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Animals ; Anti-Bacterial Agents - pharmacology ; Antibacterial agents ; Antibiotics ; Antibiotics. Antiinfectious agents. Antiparasitic agents ; ARTICLES AND COMMENTARIES ; Azithromycin - pharmacology ; Bacteria ; Bacterial Outer Membrane Proteins - biosynthesis ; Bacterial Outer Membrane Proteins - metabolism ; Bacteriology ; Biological and medical sciences ; Bronchoalveolar Lavage Fluid ; Cell Membrane Permeability - drug effects ; Culture Media ; Dipeptides - pharmacology ; Eukaryotes ; Eukaryotic cells ; Fluid permeability ; Gene expression ; Gram-negative bacteria ; Hydrogen-Ion Concentration ; Infectious diseases ; Ketolides ; Ketolides - pharmacology ; Life Sciences ; Macrolides ; Medical sciences ; Membrane Transport Proteins - biosynthesis ; Membrane Transport Proteins - deficiency ; Membrane Transport Proteins - metabolism ; Membranes ; Mice ; Microbial Sensitivity Tests ; Microbiology and Parasitology ; Models, Biological ; Pharmacology. Drug treatments ; Polymerase chain reaction ; Protein synthesis ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - drug effects ; Pseudomonas aeruginosa - metabolism ; Pumps</subject><ispartof>Clinical infectious diseases, 2012-08, Vol.55 (4), p.534-542</ispartof><rights>Copyright © 2012 Oxford University Press on behalf of the Infectious Diseases Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright University of Chicago, acting through its Press Aug 15, 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-dc48e37846539692abd7fca0ac72ebd918f7a031b056b85950fdcf3d0caa92033</citedby><cites>FETCH-LOGICAL-c470t-dc48e37846539692abd7fca0ac72ebd918f7a031b056b85950fdcf3d0caa92033</cites><orcidid>0000-0001-7381-5671 ; 0000-0002-0052-7991 ; 0000-0003-0299-4654</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23249841$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23249841$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26233374$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22573850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01695413$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Buyck, Julien M.</creatorcontrib><creatorcontrib>Plésiat, Patrick</creatorcontrib><creatorcontrib>Traore, H.</creatorcontrib><creatorcontrib>Vanderbist, F.</creatorcontrib><creatorcontrib>Tulkens, Paul M.</creatorcontrib><creatorcontrib>Van Bambeke, Françoise</creatorcontrib><title>Increased Susceptibility of Pseudomonas aeruginosa to Macrolides and Ketolides in Eukaryotic Cell Culture Media and Biological Fluids Due to Decreased Expression of oprM and Increased Outer-Membrane Permeability</title><title>Clinical infectious diseases</title><addtitle>Clin Infect Dis</addtitle><description>Background. Macrolides show high minimum inhibitory concentrations (MICs) against Pseudomonas aeruginosa when tested in recommended media (cation-adjusted Muller-Hinton broth [CA-MHB]). Nevertheless, azithromycin is successfully used in cystic fibrosis patients, supposedly because of "nonantibiotic effects." Methods. CA-MHB and Roswell Park Memorial Institute (RPMI) 1640 medium (used for growing eukaryotic cells) were compared for measuring azithromycin MICs (with or without Phe-Arg-β-naphthylamide [PAβN], an efflux inhibitor), [ 14 C]-clarithromycin accumulation, azithromycin-induced protein synthesis inhibition, oprM (encoding the outer-membrane protein coupled with MexAB and MexXY efflux systems) expression, outer-membrane permeability (tested with 1-N-phenylnaphthylamine and nitrocefin), and synergy (determined by checkerboard assay) between azithromycin and outer-membrane disrupting agents. Key experiments were repeated with CA-MHB supplemented with serum, mouse bronchoalveolar lavage fluid, other macrolides, and other gram-negative bacteria. Results. Azithromycin MICs were ≥128 mg/L in CA-MHB, compared with 1-16 mg/L in RPMI 1640 medium, CA-MHB supplemented with serum, or bronchoalveolar lavage fluid (repeated for RPMI 1640 medium with clarithromycin, other macrolides, and other gram-negative bacteria). [ 14 C]-clarithromycin accumulation was 2.2-fold higher in RPMI 1640 medium, compared with CA-MHB. Inhibition of &gt;95% of protein synthesis was obtained with azithromycin at 16 mg/L in RPMI 1640 medium, compared with &gt;512 mg/L in CA-MHB. Strains not expressing oprM showed an MIC of 4 mg/L in CA-MHB. PAβN decreased MICs in CA-MHB but not in RPMI 1640 medium. Real-time polymerase chain reaction showed downregulation of oprM by azithromycin in RPMI 1640 medium. Outer-membrane permeability was 3-4.5 times higher in RPMI 1640 medium or bronchoalveolar lavage fluid, compared with CA-MHB. Azithromycin combined with outer-membrane disrupting agents were synergistic in CA-MHB but indifferent in RPMI 1640 medium. Conclusions. Macrolides show antimicrobial activity against P. aeruginosa in eukaryotic media through increased uptake and reduced efflux. These data may help explain the clinical efficacy of macrolides against pseudomonal infections.</description><subject>Animals</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibacterial agents</subject><subject>Antibiotics</subject><subject>Antibiotics. Antiinfectious agents. Antiparasitic agents</subject><subject>ARTICLES AND COMMENTARIES</subject><subject>Azithromycin - pharmacology</subject><subject>Bacteria</subject><subject>Bacterial Outer Membrane Proteins - biosynthesis</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Bronchoalveolar Lavage Fluid</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Culture Media</subject><subject>Dipeptides - pharmacology</subject><subject>Eukaryotes</subject><subject>Eukaryotic cells</subject><subject>Fluid permeability</subject><subject>Gene expression</subject><subject>Gram-negative bacteria</subject><subject>Hydrogen-Ion Concentration</subject><subject>Infectious diseases</subject><subject>Ketolides</subject><subject>Ketolides - pharmacology</subject><subject>Life Sciences</subject><subject>Macrolides</subject><subject>Medical sciences</subject><subject>Membrane Transport Proteins - biosynthesis</subject><subject>Membrane Transport Proteins - deficiency</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Membranes</subject><subject>Mice</subject><subject>Microbial Sensitivity Tests</subject><subject>Microbiology and Parasitology</subject><subject>Models, Biological</subject><subject>Pharmacology. Drug treatments</subject><subject>Polymerase chain reaction</subject><subject>Protein synthesis</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - drug effects</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Pumps</subject><issn>1058-4838</issn><issn>1537-6591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw4Q6yhJAAacGO49g-lu2WVuyqlYBz5NiT4sWJFztG9Hfyh_Butl2JEwfLX8-M3pl5i-I5we8JlvSDtiavWHH6oDgmjPJZzSR5mM-YiVklqDgqnsS4xpgQgdnj4qgsGaeC4ePiz-WgA6gIBn1JUcNmtK11drxFvkPXEZLxvR9URApCurGDjwqNHq2UDt5ZA_ljMOgzjPubHdAi_VDh1o9Wozk4h-bJjSkAWoGxaod_tN75G6uVQ-cuWRPRWYJt2jO4E7P4vQkQo_XDVojfhNUu8qD2Ko0QZivo26AGQNcQelCT9KfFo065CM_2-0nx7XzxdX4xW159upyfLme64nicGV0JoFxUNaOylqVqDe-0wkrzElojiei4wpS0mNWtYJLhzuiOGqyVkiWm9KR4O-X9rlyzCbbPZTde2ebidNls3zCpJasI_UUy-2ZiN8H_TBDHpre53c5l8T7FhnBe14xh8R8oLnnNsxyW0Vf_oGufwpCL3lFCUlnKTL2bqDyzGAN092IJbrYOarKDmslBGX65T5naHsw9emeZDLzeAyrmCXa5_Tn0wNUlpZRXmXsxces4-nD4p2UlRW7KXwIT2zo</recordid><startdate>20120815</startdate><enddate>20120815</enddate><creator>Buyck, Julien M.</creator><creator>Plésiat, Patrick</creator><creator>Traore, H.</creator><creator>Vanderbist, F.</creator><creator>Tulkens, Paul M.</creator><creator>Van Bambeke, Françoise</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T2</scope><scope>7T7</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7381-5671</orcidid><orcidid>https://orcid.org/0000-0002-0052-7991</orcidid><orcidid>https://orcid.org/0000-0003-0299-4654</orcidid></search><sort><creationdate>20120815</creationdate><title>Increased Susceptibility of Pseudomonas aeruginosa to Macrolides and Ketolides in Eukaryotic Cell Culture Media and Biological Fluids Due to Decreased Expression of oprM and Increased Outer-Membrane Permeability</title><author>Buyck, Julien M. ; Plésiat, Patrick ; Traore, H. ; Vanderbist, F. ; Tulkens, Paul M. ; Van Bambeke, Françoise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-dc48e37846539692abd7fca0ac72ebd918f7a031b056b85950fdcf3d0caa92033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibacterial agents</topic><topic>Antibiotics</topic><topic>Antibiotics. Antiinfectious agents. Antiparasitic agents</topic><topic>ARTICLES AND COMMENTARIES</topic><topic>Azithromycin - pharmacology</topic><topic>Bacteria</topic><topic>Bacterial Outer Membrane Proteins - biosynthesis</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Bronchoalveolar Lavage Fluid</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Culture Media</topic><topic>Dipeptides - pharmacology</topic><topic>Eukaryotes</topic><topic>Eukaryotic cells</topic><topic>Fluid permeability</topic><topic>Gene expression</topic><topic>Gram-negative bacteria</topic><topic>Hydrogen-Ion Concentration</topic><topic>Infectious diseases</topic><topic>Ketolides</topic><topic>Ketolides - pharmacology</topic><topic>Life Sciences</topic><topic>Macrolides</topic><topic>Medical sciences</topic><topic>Membrane Transport Proteins - biosynthesis</topic><topic>Membrane Transport Proteins - deficiency</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Membranes</topic><topic>Mice</topic><topic>Microbial Sensitivity Tests</topic><topic>Microbiology and Parasitology</topic><topic>Models, Biological</topic><topic>Pharmacology. Drug treatments</topic><topic>Polymerase chain reaction</topic><topic>Protein synthesis</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - drug effects</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Pumps</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buyck, Julien M.</creatorcontrib><creatorcontrib>Plésiat, Patrick</creatorcontrib><creatorcontrib>Traore, H.</creatorcontrib><creatorcontrib>Vanderbist, F.</creatorcontrib><creatorcontrib>Tulkens, Paul M.</creatorcontrib><creatorcontrib>Van Bambeke, Françoise</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Clinical infectious diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buyck, Julien M.</au><au>Plésiat, Patrick</au><au>Traore, H.</au><au>Vanderbist, F.</au><au>Tulkens, Paul M.</au><au>Van Bambeke, Françoise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increased Susceptibility of Pseudomonas aeruginosa to Macrolides and Ketolides in Eukaryotic Cell Culture Media and Biological Fluids Due to Decreased Expression of oprM and Increased Outer-Membrane Permeability</atitle><jtitle>Clinical infectious diseases</jtitle><addtitle>Clin Infect Dis</addtitle><date>2012-08-15</date><risdate>2012</risdate><volume>55</volume><issue>4</issue><spage>534</spage><epage>542</epage><pages>534-542</pages><issn>1058-4838</issn><eissn>1537-6591</eissn><coden>CIDIEL</coden><abstract>Background. Macrolides show high minimum inhibitory concentrations (MICs) against Pseudomonas aeruginosa when tested in recommended media (cation-adjusted Muller-Hinton broth [CA-MHB]). Nevertheless, azithromycin is successfully used in cystic fibrosis patients, supposedly because of "nonantibiotic effects." Methods. CA-MHB and Roswell Park Memorial Institute (RPMI) 1640 medium (used for growing eukaryotic cells) were compared for measuring azithromycin MICs (with or without Phe-Arg-β-naphthylamide [PAβN], an efflux inhibitor), [ 14 C]-clarithromycin accumulation, azithromycin-induced protein synthesis inhibition, oprM (encoding the outer-membrane protein coupled with MexAB and MexXY efflux systems) expression, outer-membrane permeability (tested with 1-N-phenylnaphthylamine and nitrocefin), and synergy (determined by checkerboard assay) between azithromycin and outer-membrane disrupting agents. Key experiments were repeated with CA-MHB supplemented with serum, mouse bronchoalveolar lavage fluid, other macrolides, and other gram-negative bacteria. Results. Azithromycin MICs were ≥128 mg/L in CA-MHB, compared with 1-16 mg/L in RPMI 1640 medium, CA-MHB supplemented with serum, or bronchoalveolar lavage fluid (repeated for RPMI 1640 medium with clarithromycin, other macrolides, and other gram-negative bacteria). [ 14 C]-clarithromycin accumulation was 2.2-fold higher in RPMI 1640 medium, compared with CA-MHB. Inhibition of &gt;95% of protein synthesis was obtained with azithromycin at 16 mg/L in RPMI 1640 medium, compared with &gt;512 mg/L in CA-MHB. Strains not expressing oprM showed an MIC of 4 mg/L in CA-MHB. PAβN decreased MICs in CA-MHB but not in RPMI 1640 medium. Real-time polymerase chain reaction showed downregulation of oprM by azithromycin in RPMI 1640 medium. Outer-membrane permeability was 3-4.5 times higher in RPMI 1640 medium or bronchoalveolar lavage fluid, compared with CA-MHB. Azithromycin combined with outer-membrane disrupting agents were synergistic in CA-MHB but indifferent in RPMI 1640 medium. Conclusions. Macrolides show antimicrobial activity against P. aeruginosa in eukaryotic media through increased uptake and reduced efflux. These data may help explain the clinical efficacy of macrolides against pseudomonal infections.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>22573850</pmid><doi>10.1093/cid/cis473</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7381-5671</orcidid><orcidid>https://orcid.org/0000-0002-0052-7991</orcidid><orcidid>https://orcid.org/0000-0003-0299-4654</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-4838
ispartof Clinical infectious diseases, 2012-08, Vol.55 (4), p.534-542
issn 1058-4838
1537-6591
language eng
recordid cdi_hal_primary_oai_HAL_hal_01695413v1
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Anti-Bacterial Agents - pharmacology
Antibacterial agents
Antibiotics
Antibiotics. Antiinfectious agents. Antiparasitic agents
ARTICLES AND COMMENTARIES
Azithromycin - pharmacology
Bacteria
Bacterial Outer Membrane Proteins - biosynthesis
Bacterial Outer Membrane Proteins - metabolism
Bacteriology
Biological and medical sciences
Bronchoalveolar Lavage Fluid
Cell Membrane Permeability - drug effects
Culture Media
Dipeptides - pharmacology
Eukaryotes
Eukaryotic cells
Fluid permeability
Gene expression
Gram-negative bacteria
Hydrogen-Ion Concentration
Infectious diseases
Ketolides
Ketolides - pharmacology
Life Sciences
Macrolides
Medical sciences
Membrane Transport Proteins - biosynthesis
Membrane Transport Proteins - deficiency
Membrane Transport Proteins - metabolism
Membranes
Mice
Microbial Sensitivity Tests
Microbiology and Parasitology
Models, Biological
Pharmacology. Drug treatments
Polymerase chain reaction
Protein synthesis
Pseudomonas aeruginosa
Pseudomonas aeruginosa - drug effects
Pseudomonas aeruginosa - metabolism
Pumps
title Increased Susceptibility of Pseudomonas aeruginosa to Macrolides and Ketolides in Eukaryotic Cell Culture Media and Biological Fluids Due to Decreased Expression of oprM and Increased Outer-Membrane Permeability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increased%20Susceptibility%20of%20Pseudomonas%20aeruginosa%20to%20Macrolides%20and%20Ketolides%20in%20Eukaryotic%20Cell%20Culture%20Media%20and%20Biological%20Fluids%20Due%20to%20Decreased%20Expression%20of%20oprM%20and%20Increased%20Outer-Membrane%20Permeability&rft.jtitle=Clinical%20infectious%20diseases&rft.au=Buyck,%20Julien%20M.&rft.date=2012-08-15&rft.volume=55&rft.issue=4&rft.spage=534&rft.epage=542&rft.pages=534-542&rft.issn=1058-4838&rft.eissn=1537-6591&rft.coden=CIDIEL&rft_id=info:doi/10.1093/cid/cis473&rft_dat=%3Cjstor_hal_p%3E23249841%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027893929&rft_id=info:pmid/22573850&rft_jstor_id=23249841&rfr_iscdi=true