Towards fully data driven ground-motion prediction models for Europe
We have used the Artificial Neural Network method (ANN) for the derivation of physically sound, easy-to-handle, predictive ground-motion models from a subset of the Reference database for Seismic ground-motion prediction in Europe (RESORCE). Only shallow earthquakes (depth smaller than 25 km) and re...
Gespeichert in:
Veröffentlicht in: | Bulletin of earthquake engineering 2014-02, Vol.12 (1), p.495-516 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 516 |
---|---|
container_issue | 1 |
container_start_page | 495 |
container_title | Bulletin of earthquake engineering |
container_volume | 12 |
creator | Derras, Boumédiène Bard, Pierre Yves Cotton, Fabrice |
description | We have used the Artificial Neural Network method (ANN) for the derivation of physically sound, easy-to-handle, predictive ground-motion models from a subset of the Reference database for Seismic ground-motion prediction in Europe (RESORCE). Only shallow earthquakes (depth smaller than 25 km) and recordings corresponding to stations with measured
V
s
30
properties have been selected. Five input parameters were selected: the moment magnitude
M
W
, the Joyner–Boore distance
R
J
B
, the focal mechanism, the hypocentral depth, and the site proxy
V
S
30
. A feed-forward ANN type is used, with one 5-neuron hidden layer, and an output layer grouping all the considered ground motion parameters, i.e., peak ground acceleration (
PGA
), peak ground velocity (
PGV
) and 5 %-damped pseudo-spectral acceleration (
PSA
) at 62 periods from 0.01 to 4 s. A procedure similar to the random-effects approach was developed to provide between and within event standard deviations. The total standard deviation (
σ
) varies between 0.298 and 0.378 (log
10
unit) depending on the period, with between-event and within-event variabilities in the range 0.149–0.190 and 0.258–0.327, respectively. Those values prove comparable to those of conventional GMPEs. Despite the absence of any a priori assumption on the functional dependence, our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude, amplification on soft soils and even indications for nonlinear effects in softer soils. |
doi_str_mv | 10.1007/s10518-013-9481-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01693229v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929471986</sourcerecordid><originalsourceid>FETCH-LOGICAL-a645t-966c0af4db5b704224c86979899cd525062dbec90061ccee98cee9d1e37726153</originalsourceid><addsrcrecordid>eNqFkU1LAzEQhhdRsH78AG8LXvQQncnmY3Ms9aNCwYuCt5Amqa5sNzXpVvz37nZFRBAvM8PwvMM7vFl2gnCBAPIyIXAsCWBBFCuRwE42Qi4LgoyL3e0MRAp82s8OUnoFoFwqGGVXD-HdRJfyRVvXH7kza5O7WG18kz_H0DaOLMO6Ck2-it5Vdjsug_N1pwgxv25jWPmjbG9h6uSPv_ph9nhz_TCZktn97d1kPCNGML4mSggLZsHcnM8lMEqZLYWSqlTKOk45COrm3ioAgdZ6r8q-OPSFlFQgLw6z8-Hui6n1KlZLEz90MJWejme63wEKVVCqNtixZwO7iuGt9Wmtl1Wyvq5N40ObNCqqmERViv9RwZExKniPnv5CX0Mbm-5pjUzJgikqWEfhQNkYUop-8W0WQfdx6SGuzm-h-7g0dBo6aFLHNs8-_rj8p-gT2GqVPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497349264</pqid></control><display><type>article</type><title>Towards fully data driven ground-motion prediction models for Europe</title><source>SpringerLink Journals (MCLS)</source><creator>Derras, Boumédiène ; Bard, Pierre Yves ; Cotton, Fabrice</creator><creatorcontrib>Derras, Boumédiène ; Bard, Pierre Yves ; Cotton, Fabrice</creatorcontrib><description>We have used the Artificial Neural Network method (ANN) for the derivation of physically sound, easy-to-handle, predictive ground-motion models from a subset of the Reference database for Seismic ground-motion prediction in Europe (RESORCE). Only shallow earthquakes (depth smaller than 25 km) and recordings corresponding to stations with measured
V
s
30
properties have been selected. Five input parameters were selected: the moment magnitude
M
W
, the Joyner–Boore distance
R
J
B
, the focal mechanism, the hypocentral depth, and the site proxy
V
S
30
. A feed-forward ANN type is used, with one 5-neuron hidden layer, and an output layer grouping all the considered ground motion parameters, i.e., peak ground acceleration (
PGA
), peak ground velocity (
PGV
) and 5 %-damped pseudo-spectral acceleration (
PSA
) at 62 periods from 0.01 to 4 s. A procedure similar to the random-effects approach was developed to provide between and within event standard deviations. The total standard deviation (
σ
) varies between 0.298 and 0.378 (log
10
unit) depending on the period, with between-event and within-event variabilities in the range 0.149–0.190 and 0.258–0.327, respectively. Those values prove comparable to those of conventional GMPEs. Despite the absence of any a priori assumption on the functional dependence, our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude, amplification on soft soils and even indications for nonlinear effects in softer soils.</description><identifier>ISSN: 1570-761X</identifier><identifier>EISSN: 1573-1456</identifier><identifier>DOI: 10.1007/s10518-013-9481-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acceleration ; Civil Engineering ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Environmental Engineering/Biotechnology ; Geophysics ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Ground motion ; Grounds ; Hydrogeology ; Learning theory ; Mathematical models ; Neural networks ; Original Research Paper ; Prediction models ; Predictions ; Sciences of the Universe ; Seismic activity ; Seismic phenomena ; Soils ; Standard deviation ; Structural Geology ; Time & motion studies</subject><ispartof>Bulletin of earthquake engineering, 2014-02, Vol.12 (1), p.495-516</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a645t-966c0af4db5b704224c86979899cd525062dbec90061ccee98cee9d1e37726153</citedby><cites>FETCH-LOGICAL-a645t-966c0af4db5b704224c86979899cd525062dbec90061ccee98cee9d1e37726153</cites><orcidid>0000-0002-3018-1047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10518-013-9481-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10518-013-9481-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01693229$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Derras, Boumédiène</creatorcontrib><creatorcontrib>Bard, Pierre Yves</creatorcontrib><creatorcontrib>Cotton, Fabrice</creatorcontrib><title>Towards fully data driven ground-motion prediction models for Europe</title><title>Bulletin of earthquake engineering</title><addtitle>Bull Earthquake Eng</addtitle><description>We have used the Artificial Neural Network method (ANN) for the derivation of physically sound, easy-to-handle, predictive ground-motion models from a subset of the Reference database for Seismic ground-motion prediction in Europe (RESORCE). Only shallow earthquakes (depth smaller than 25 km) and recordings corresponding to stations with measured
V
s
30
properties have been selected. Five input parameters were selected: the moment magnitude
M
W
, the Joyner–Boore distance
R
J
B
, the focal mechanism, the hypocentral depth, and the site proxy
V
S
30
. A feed-forward ANN type is used, with one 5-neuron hidden layer, and an output layer grouping all the considered ground motion parameters, i.e., peak ground acceleration (
PGA
), peak ground velocity (
PGV
) and 5 %-damped pseudo-spectral acceleration (
PSA
) at 62 periods from 0.01 to 4 s. A procedure similar to the random-effects approach was developed to provide between and within event standard deviations. The total standard deviation (
σ
) varies between 0.298 and 0.378 (log
10
unit) depending on the period, with between-event and within-event variabilities in the range 0.149–0.190 and 0.258–0.327, respectively. Those values prove comparable to those of conventional GMPEs. Despite the absence of any a priori assumption on the functional dependence, our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude, amplification on soft soils and even indications for nonlinear effects in softer soils.</description><subject>Acceleration</subject><subject>Civil Engineering</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Grounds</subject><subject>Hydrogeology</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Original Research Paper</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Sciences of the Universe</subject><subject>Seismic activity</subject><subject>Seismic phenomena</subject><subject>Soils</subject><subject>Standard deviation</subject><subject>Structural Geology</subject><subject>Time & motion studies</subject><issn>1570-761X</issn><issn>1573-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LAzEQhhdRsH78AG8LXvQQncnmY3Ms9aNCwYuCt5Amqa5sNzXpVvz37nZFRBAvM8PwvMM7vFl2gnCBAPIyIXAsCWBBFCuRwE42Qi4LgoyL3e0MRAp82s8OUnoFoFwqGGVXD-HdRJfyRVvXH7kza5O7WG18kz_H0DaOLMO6Ck2-it5Vdjsug_N1pwgxv25jWPmjbG9h6uSPv_ph9nhz_TCZktn97d1kPCNGML4mSggLZsHcnM8lMEqZLYWSqlTKOk45COrm3ioAgdZ6r8q-OPSFlFQgLw6z8-Hui6n1KlZLEz90MJWejme63wEKVVCqNtixZwO7iuGt9Wmtl1Wyvq5N40ObNCqqmERViv9RwZExKniPnv5CX0Mbm-5pjUzJgikqWEfhQNkYUop-8W0WQfdx6SGuzm-h-7g0dBo6aFLHNs8-_rj8p-gT2GqVPg</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Derras, Boumédiène</creator><creator>Bard, Pierre Yves</creator><creator>Cotton, Fabrice</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7SM</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3018-1047</orcidid></search><sort><creationdate>20140201</creationdate><title>Towards fully data driven ground-motion prediction models for Europe</title><author>Derras, Boumédiène ; Bard, Pierre Yves ; Cotton, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a645t-966c0af4db5b704224c86979899cd525062dbec90061ccee98cee9d1e37726153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acceleration</topic><topic>Civil Engineering</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Grounds</topic><topic>Hydrogeology</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Original Research Paper</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Sciences of the Universe</topic><topic>Seismic activity</topic><topic>Seismic phenomena</topic><topic>Soils</topic><topic>Standard deviation</topic><topic>Structural Geology</topic><topic>Time & motion studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derras, Boumédiène</creatorcontrib><creatorcontrib>Bard, Pierre Yves</creatorcontrib><creatorcontrib>Cotton, Fabrice</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bulletin of earthquake engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derras, Boumédiène</au><au>Bard, Pierre Yves</au><au>Cotton, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards fully data driven ground-motion prediction models for Europe</atitle><jtitle>Bulletin of earthquake engineering</jtitle><stitle>Bull Earthquake Eng</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>12</volume><issue>1</issue><spage>495</spage><epage>516</epage><pages>495-516</pages><issn>1570-761X</issn><eissn>1573-1456</eissn><abstract>We have used the Artificial Neural Network method (ANN) for the derivation of physically sound, easy-to-handle, predictive ground-motion models from a subset of the Reference database for Seismic ground-motion prediction in Europe (RESORCE). Only shallow earthquakes (depth smaller than 25 km) and recordings corresponding to stations with measured
V
s
30
properties have been selected. Five input parameters were selected: the moment magnitude
M
W
, the Joyner–Boore distance
R
J
B
, the focal mechanism, the hypocentral depth, and the site proxy
V
S
30
. A feed-forward ANN type is used, with one 5-neuron hidden layer, and an output layer grouping all the considered ground motion parameters, i.e., peak ground acceleration (
PGA
), peak ground velocity (
PGV
) and 5 %-damped pseudo-spectral acceleration (
PSA
) at 62 periods from 0.01 to 4 s. A procedure similar to the random-effects approach was developed to provide between and within event standard deviations. The total standard deviation (
σ
) varies between 0.298 and 0.378 (log
10
unit) depending on the period, with between-event and within-event variabilities in the range 0.149–0.190 and 0.258–0.327, respectively. Those values prove comparable to those of conventional GMPEs. Despite the absence of any a priori assumption on the functional dependence, our results exhibit a number of physically sound features: magnitude scaling of the distance dependency, near-fault saturation distance increasing with magnitude, amplification on soft soils and even indications for nonlinear effects in softer soils.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10518-013-9481-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-3018-1047</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-761X |
ispartof | Bulletin of earthquake engineering, 2014-02, Vol.12 (1), p.495-516 |
issn | 1570-761X 1573-1456 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01693229v1 |
source | SpringerLink Journals (MCLS) |
subjects | Acceleration Civil Engineering Earth and Environmental Science Earth Sciences Earthquakes Environmental Engineering/Biotechnology Geophysics Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Ground motion Grounds Hydrogeology Learning theory Mathematical models Neural networks Original Research Paper Prediction models Predictions Sciences of the Universe Seismic activity Seismic phenomena Soils Standard deviation Structural Geology Time & motion studies |
title | Towards fully data driven ground-motion prediction models for Europe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20fully%20data%20driven%20ground-motion%20prediction%20models%20for%20Europe&rft.jtitle=Bulletin%20of%20earthquake%20engineering&rft.au=Derras,%20Boum%C3%A9di%C3%A8ne&rft.date=2014-02-01&rft.volume=12&rft.issue=1&rft.spage=495&rft.epage=516&rft.pages=495-516&rft.issn=1570-761X&rft.eissn=1573-1456&rft_id=info:doi/10.1007/s10518-013-9481-0&rft_dat=%3Cproquest_hal_p%3E1929471986%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1497349264&rft_id=info:pmid/&rfr_iscdi=true |