Low-dimensional catalysts for hydrogen evolution and CO2 reduction

Low-dimensional materials and their hybrids have emerged as promising candidates for electrocatalytic and photocatalytic hydrogen evolution and CO 2 conversion into useful molecules. Progress in synthetic methods for the production of catalysts coupled with a better understanding of the fundamental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Chemistry 2018-01, Vol.2 (1), Article 0105
Hauptverfasser: Voiry, Damien, Shin, Hyeon Suk, Loh, Kian Ping, Chhowalla, Manish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Nature reviews. Chemistry
container_volume 2
creator Voiry, Damien
Shin, Hyeon Suk
Loh, Kian Ping
Chhowalla, Manish
description Low-dimensional materials and their hybrids have emerged as promising candidates for electrocatalytic and photocatalytic hydrogen evolution and CO 2 conversion into useful molecules. Progress in synthetic methods for the production of catalysts coupled with a better understanding of the fundamental catalytic mechanisms has enabled the rational design of catalytic nanomaterials with improved performance and selectivity. In this Review, we analyse the state of the art in the implementation of low-dimensional nanomaterials and their van der Waals heterostructures for hydrogen evolution and CO 2 reduction by electrocatalysis and photocatalysis. We explore the mechanisms involved in both reactions and the different strategies to further optimize the activity, efficiency and selectivity of low-dimensional catalysts. The electrochemical oxidation and reduction of water and carbon dioxide are associated with the release or storage of energy. This Review reports the latest developments in the design and use of low-dimensional materials and their van der Waals heterostructures for electrocatalytic and photocatalytic hydrogen evolution and CO 2 conversion.
doi_str_mv 10.1038/s41570-017-0105
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01692396v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389699958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-ec90b9afc95c52947b045f87db8097386f1ac10efccf6a389f13bf039fedc4983</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4MoOObOXguePNS9NG3Td5xDnVDYRc8hTZOto2tm0k3235tSUS8ewguP7_fB-xFyS-GBAivmPqUZhxgoDw-yCzJJGPKYsay4_PO_JjPvdwBAkaXIcUIeS_sZ181ed76xnWwjJXvZnn3vI2NdtD3Xzm50F-mTbY99QCLZ1dFynURO10c1bG7IlZGt17PvOSXvz09vy1Vcrl9el4syVimFPtYKoUJpFGYqSzDlFaSZKXhdFYCcFbmhUlHQRimTS1agoawywNDoWqVYsCm5H71b2YqDa_bSnYWVjVgtSjHsgOYYTs1PNLB3I3tw9uOofS929ujCfV4kQZ0jYjYY5yOlnPXeafOjpSCGXsXYazBzMfQaEjAmfCC7jXa_3v8iXwVEeMU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389699958</pqid></control><display><type>article</type><title>Low-dimensional catalysts for hydrogen evolution and CO2 reduction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Voiry, Damien ; Shin, Hyeon Suk ; Loh, Kian Ping ; Chhowalla, Manish</creator><creatorcontrib>Voiry, Damien ; Shin, Hyeon Suk ; Loh, Kian Ping ; Chhowalla, Manish</creatorcontrib><description>Low-dimensional materials and their hybrids have emerged as promising candidates for electrocatalytic and photocatalytic hydrogen evolution and CO 2 conversion into useful molecules. Progress in synthetic methods for the production of catalysts coupled with a better understanding of the fundamental catalytic mechanisms has enabled the rational design of catalytic nanomaterials with improved performance and selectivity. In this Review, we analyse the state of the art in the implementation of low-dimensional nanomaterials and their van der Waals heterostructures for hydrogen evolution and CO 2 reduction by electrocatalysis and photocatalysis. We explore the mechanisms involved in both reactions and the different strategies to further optimize the activity, efficiency and selectivity of low-dimensional catalysts. The electrochemical oxidation and reduction of water and carbon dioxide are associated with the release or storage of energy. This Review reports the latest developments in the design and use of low-dimensional materials and their van der Waals heterostructures for electrocatalytic and photocatalytic hydrogen evolution and CO 2 conversion.</description><identifier>ISSN: 2397-3358</identifier><identifier>EISSN: 2397-3358</identifier><identifier>DOI: 10.1038/s41570-017-0105</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/161/886 ; 639/4077/909 ; Analytical Chemistry ; Biochemistry ; Carbon dioxide ; Catalysts ; Chemical Sciences ; Chemistry ; Chemistry/Food Science ; Conversion ; Electrochemical oxidation ; Energy storage ; Heterostructures ; Hydrogen ; Hydrogen evolution ; Inorganic Chemistry ; Nanomaterials ; Organic Chemistry ; Photocatalysis ; Physical Chemistry ; Production methods ; Reduction ; review-article ; Selectivity ; State-of-the-art reviews</subject><ispartof>Nature reviews. Chemistry, 2018-01, Vol.2 (1), Article 0105</ispartof><rights>Macmillan Publishers Limited 2018</rights><rights>Macmillan Publishers Limited 2018.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-ec90b9afc95c52947b045f87db8097386f1ac10efccf6a389f13bf039fedc4983</citedby><cites>FETCH-LOGICAL-c410t-ec90b9afc95c52947b045f87db8097386f1ac10efccf6a389f13bf039fedc4983</cites><orcidid>0000-0002-1664-2839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41570-017-0105$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41570-017-0105$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://hal.umontpellier.fr/hal-01692396$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Voiry, Damien</creatorcontrib><creatorcontrib>Shin, Hyeon Suk</creatorcontrib><creatorcontrib>Loh, Kian Ping</creatorcontrib><creatorcontrib>Chhowalla, Manish</creatorcontrib><title>Low-dimensional catalysts for hydrogen evolution and CO2 reduction</title><title>Nature reviews. Chemistry</title><addtitle>Nat Rev Chem</addtitle><description>Low-dimensional materials and their hybrids have emerged as promising candidates for electrocatalytic and photocatalytic hydrogen evolution and CO 2 conversion into useful molecules. Progress in synthetic methods for the production of catalysts coupled with a better understanding of the fundamental catalytic mechanisms has enabled the rational design of catalytic nanomaterials with improved performance and selectivity. In this Review, we analyse the state of the art in the implementation of low-dimensional nanomaterials and their van der Waals heterostructures for hydrogen evolution and CO 2 reduction by electrocatalysis and photocatalysis. We explore the mechanisms involved in both reactions and the different strategies to further optimize the activity, efficiency and selectivity of low-dimensional catalysts. The electrochemical oxidation and reduction of water and carbon dioxide are associated with the release or storage of energy. This Review reports the latest developments in the design and use of low-dimensional materials and their van der Waals heterostructures for electrocatalytic and photocatalytic hydrogen evolution and CO 2 conversion.</description><subject>639/301/299/161/886</subject><subject>639/4077/909</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Conversion</subject><subject>Electrochemical oxidation</subject><subject>Energy storage</subject><subject>Heterostructures</subject><subject>Hydrogen</subject><subject>Hydrogen evolution</subject><subject>Inorganic Chemistry</subject><subject>Nanomaterials</subject><subject>Organic Chemistry</subject><subject>Photocatalysis</subject><subject>Physical Chemistry</subject><subject>Production methods</subject><subject>Reduction</subject><subject>review-article</subject><subject>Selectivity</subject><subject>State-of-the-art reviews</subject><issn>2397-3358</issn><issn>2397-3358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFLwzAUh4MoOObOXguePNS9NG3Td5xDnVDYRc8hTZOto2tm0k3235tSUS8ewguP7_fB-xFyS-GBAivmPqUZhxgoDw-yCzJJGPKYsay4_PO_JjPvdwBAkaXIcUIeS_sZ181ed76xnWwjJXvZnn3vI2NdtD3Xzm50F-mTbY99QCLZ1dFynURO10c1bG7IlZGt17PvOSXvz09vy1Vcrl9el4syVimFPtYKoUJpFGYqSzDlFaSZKXhdFYCcFbmhUlHQRimTS1agoawywNDoWqVYsCm5H71b2YqDa_bSnYWVjVgtSjHsgOYYTs1PNLB3I3tw9uOofS929ujCfV4kQZ0jYjYY5yOlnPXeafOjpSCGXsXYazBzMfQaEjAmfCC7jXa_3v8iXwVEeMU</recordid><startdate>20180110</startdate><enddate>20180110</enddate><creator>Voiry, Damien</creator><creator>Shin, Hyeon Suk</creator><creator>Loh, Kian Ping</creator><creator>Chhowalla, Manish</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1664-2839</orcidid></search><sort><creationdate>20180110</creationdate><title>Low-dimensional catalysts for hydrogen evolution and CO2 reduction</title><author>Voiry, Damien ; Shin, Hyeon Suk ; Loh, Kian Ping ; Chhowalla, Manish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-ec90b9afc95c52947b045f87db8097386f1ac10efccf6a389f13bf039fedc4983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/299/161/886</topic><topic>639/4077/909</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Conversion</topic><topic>Electrochemical oxidation</topic><topic>Energy storage</topic><topic>Heterostructures</topic><topic>Hydrogen</topic><topic>Hydrogen evolution</topic><topic>Inorganic Chemistry</topic><topic>Nanomaterials</topic><topic>Organic Chemistry</topic><topic>Photocatalysis</topic><topic>Physical Chemistry</topic><topic>Production methods</topic><topic>Reduction</topic><topic>review-article</topic><topic>Selectivity</topic><topic>State-of-the-art reviews</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voiry, Damien</creatorcontrib><creatorcontrib>Shin, Hyeon Suk</creatorcontrib><creatorcontrib>Loh, Kian Ping</creatorcontrib><creatorcontrib>Chhowalla, Manish</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature reviews. Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voiry, Damien</au><au>Shin, Hyeon Suk</au><au>Loh, Kian Ping</au><au>Chhowalla, Manish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-dimensional catalysts for hydrogen evolution and CO2 reduction</atitle><jtitle>Nature reviews. Chemistry</jtitle><stitle>Nat Rev Chem</stitle><date>2018-01-10</date><risdate>2018</risdate><volume>2</volume><issue>1</issue><artnum>0105</artnum><issn>2397-3358</issn><eissn>2397-3358</eissn><abstract>Low-dimensional materials and their hybrids have emerged as promising candidates for electrocatalytic and photocatalytic hydrogen evolution and CO 2 conversion into useful molecules. Progress in synthetic methods for the production of catalysts coupled with a better understanding of the fundamental catalytic mechanisms has enabled the rational design of catalytic nanomaterials with improved performance and selectivity. In this Review, we analyse the state of the art in the implementation of low-dimensional nanomaterials and their van der Waals heterostructures for hydrogen evolution and CO 2 reduction by electrocatalysis and photocatalysis. We explore the mechanisms involved in both reactions and the different strategies to further optimize the activity, efficiency and selectivity of low-dimensional catalysts. The electrochemical oxidation and reduction of water and carbon dioxide are associated with the release or storage of energy. This Review reports the latest developments in the design and use of low-dimensional materials and their van der Waals heterostructures for electrocatalytic and photocatalytic hydrogen evolution and CO 2 conversion.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41570-017-0105</doi><orcidid>https://orcid.org/0000-0002-1664-2839</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2397-3358
ispartof Nature reviews. Chemistry, 2018-01, Vol.2 (1), Article 0105
issn 2397-3358
2397-3358
language eng
recordid cdi_hal_primary_oai_HAL_hal_01692396v1
source SpringerLink Journals - AutoHoldings
subjects 639/301/299/161/886
639/4077/909
Analytical Chemistry
Biochemistry
Carbon dioxide
Catalysts
Chemical Sciences
Chemistry
Chemistry/Food Science
Conversion
Electrochemical oxidation
Energy storage
Heterostructures
Hydrogen
Hydrogen evolution
Inorganic Chemistry
Nanomaterials
Organic Chemistry
Photocatalysis
Physical Chemistry
Production methods
Reduction
review-article
Selectivity
State-of-the-art reviews
title Low-dimensional catalysts for hydrogen evolution and CO2 reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A54%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-dimensional%20catalysts%20for%20hydrogen%20evolution%20and%20CO2%20reduction&rft.jtitle=Nature%20reviews.%20Chemistry&rft.au=Voiry,%20Damien&rft.date=2018-01-10&rft.volume=2&rft.issue=1&rft.artnum=0105&rft.issn=2397-3358&rft.eissn=2397-3358&rft_id=info:doi/10.1038/s41570-017-0105&rft_dat=%3Cproquest_hal_p%3E2389699958%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389699958&rft_id=info:pmid/&rfr_iscdi=true