Chemical Characteristics of Organic Aerosols in Shanghai: A Study by Ultrahigh‐Performance Liquid Chromatography Coupled With Orbitrap Mass Spectrometry
Particulate matter 2.5 (PM2.5) filter samples were collected in July and October 2014 and January and April 2015 in urban Shanghai and analyzed using ultrahigh‐performance liquid chromatography coupled to Orbitrap mass spectrometry. The measured chromatogram‐mass spectra were processed by a nontarge...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2017-11, Vol.122 (21), p.11,703-11,722 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Particulate matter 2.5 (PM2.5) filter samples were collected in July and October 2014 and January and April 2015 in urban Shanghai and analyzed using ultrahigh‐performance liquid chromatography coupled to Orbitrap mass spectrometry. The measured chromatogram‐mass spectra were processed by a nontarget screening approach to identify significant signals. In total, 810–1,510 chemical formulas of organic compounds in the negative polarity (negative electrospray ionization (ESI−)) and 860–1,790 in the positive polarity (ESI+), respectively, were determined. The chemical characteristics of organic aerosols (OAs) in Shanghai varied among different months and between daytime and nighttime. In the January samples, organics were generally richer in terms of both number and abundance, whereas those in the July samples were far lower. More CHO− (compounds containing only carbon, hydrogen, and oxygen and detected in ESI−) and CHOS− (sulfur‐containing organics) were found in the daytime samples, suggesting a photochemical source, whereas CHONS− (nitrogen‐ and sulfur‐containing organics) were more abundant in the nighttime samples, due to nocturnal nitrate radical chemistry. A significant number of monocyclic and polycyclic aromatic compounds, and nitrogen‐ and sulfur‐containing heterocyclic compounds, were detected in all samples, indicating that biomass burning and fossil fuel combustion made important contributions to the OAs in urban Shanghai. Additionally, precursor‐product pair analysis indicates that the epoxide pathway is an important formation route for organosulfates observed in Shanghai. Moreover, a similar analysis suggests that 35–57% of nitrogen‐containing compounds detected in ESI+ could be formed through reactions between ammonia and carbonyls. Our study presents a comprehensive overview of OAs in urban Shanghai, which helps to understand their characteristics and sources.
Key Points
Organic aerosols in Shanghai were characterized, showing that biomass burning and fossil fuel combustion were potentially important sources
Variations in organic aerosol composition are observed among different months and between daytime and nighttime
Epoxide‐intermediated routes and ammonia‐carbonyl chemistry likely dominate the formation of OSs and nitrogen‐containing species, respectively |
---|---|
ISSN: | 2169-897X 2169-8996 |
DOI: | 10.1002/2017JD026930 |