4-wave dynamics in kinetic wave turbulence
A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an “interaction representation” and a...
Gespeichert in:
Veröffentlicht in: | Physica. D 2018-01, Vol.362, p.24-59 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | |
container_start_page | 24 |
container_title | Physica. D |
container_volume | 362 |
creator | Chibbaro, Sergio Dematteis, Giovanni Rondoni, Lamberto |
description | A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an “interaction representation” and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman–Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.
•We deal with 4-wave Hamiltonian systems in the framework of wave turbulence.•Averaging technique based on the Feynman–Wyld diagrams.•Kinetic limit : leading order equations for the statistics evolution are derived.•Random-phase and random-phase and amplitude properties preserved in time.•Powerful tool to investigate many relevant physical systems. |
doi_str_mv | 10.1016/j.physd.2017.09.001 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01684022v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278917301847</els_id><sourcerecordid>oai_HAL_hal_01684022v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-23ac7933316abf441c139e7813f699ecab63d1344c9ef5f0be2a190c36444ab3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKtP4GWvCrtmMnGzOXgoRa1Q8NJ7yGZnaWq7Lcm20rc324pHTwMz_zfw_YzdAy-AQ_m0KnbLY2wKwUEVXBecwwUbQaVEXnEhLtkopVQuVKWv2U2MK54SCtWIPcr82x4oa46d3XgXM99lX76j3rvsdOj3od6vqXN0y65au4509zvHbPH2upjO8vnn-8d0Ms8dVqLPBVqnNCJCaetWSnCAmlQF2JZak7N1iQ2glE5T-9zymoQFzR2WUkpb45g9nN8u7drsgt_YcDRb681sMjfDLqlUMlkdIGXxnHVhG2Og9g8AboZmzMqcmjFDM4Zrk7wT9XKmKFkcPAUTnR8MGx_I9abZ-n_5H2r0a6s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>4-wave dynamics in kinetic wave turbulence</title><source>Elsevier ScienceDirect Journals</source><creator>Chibbaro, Sergio ; Dematteis, Giovanni ; Rondoni, Lamberto</creator><creatorcontrib>Chibbaro, Sergio ; Dematteis, Giovanni ; Rondoni, Lamberto</creatorcontrib><description>A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an “interaction representation” and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman–Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.
•We deal with 4-wave Hamiltonian systems in the framework of wave turbulence.•Averaging technique based on the Feynman–Wyld diagrams.•Kinetic limit : leading order equations for the statistics evolution are derived.•Random-phase and random-phase and amplitude properties preserved in time.•Powerful tool to investigate many relevant physical systems.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/j.physd.2017.09.001</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Intermittency ; Kinetic theory ; Physics ; Weak wave turbulence</subject><ispartof>Physica. D, 2018-01, Vol.362, p.24-59</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-23ac7933316abf441c139e7813f699ecab63d1344c9ef5f0be2a190c36444ab3</citedby><cites>FETCH-LOGICAL-c382t-23ac7933316abf441c139e7813f699ecab63d1344c9ef5f0be2a190c36444ab3</cites><orcidid>0000-0002-4223-6279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167278917301847$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65308</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01684022$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chibbaro, Sergio</creatorcontrib><creatorcontrib>Dematteis, Giovanni</creatorcontrib><creatorcontrib>Rondoni, Lamberto</creatorcontrib><title>4-wave dynamics in kinetic wave turbulence</title><title>Physica. D</title><description>A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an “interaction representation” and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman–Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.
•We deal with 4-wave Hamiltonian systems in the framework of wave turbulence.•Averaging technique based on the Feynman–Wyld diagrams.•Kinetic limit : leading order equations for the statistics evolution are derived.•Random-phase and random-phase and amplitude properties preserved in time.•Powerful tool to investigate many relevant physical systems.</description><subject>Intermittency</subject><subject>Kinetic theory</subject><subject>Physics</subject><subject>Weak wave turbulence</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKtP4GWvCrtmMnGzOXgoRa1Q8NJ7yGZnaWq7Lcm20rc324pHTwMz_zfw_YzdAy-AQ_m0KnbLY2wKwUEVXBecwwUbQaVEXnEhLtkopVQuVKWv2U2MK54SCtWIPcr82x4oa46d3XgXM99lX76j3rvsdOj3od6vqXN0y65au4509zvHbPH2upjO8vnn-8d0Ms8dVqLPBVqnNCJCaetWSnCAmlQF2JZak7N1iQ2glE5T-9zymoQFzR2WUkpb45g9nN8u7drsgt_YcDRb681sMjfDLqlUMlkdIGXxnHVhG2Og9g8AboZmzMqcmjFDM4Zrk7wT9XKmKFkcPAUTnR8MGx_I9abZ-n_5H2r0a6s</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Chibbaro, Sergio</creator><creator>Dematteis, Giovanni</creator><creator>Rondoni, Lamberto</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4223-6279</orcidid></search><sort><creationdate>20180101</creationdate><title>4-wave dynamics in kinetic wave turbulence</title><author>Chibbaro, Sergio ; Dematteis, Giovanni ; Rondoni, Lamberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-23ac7933316abf441c139e7813f699ecab63d1344c9ef5f0be2a190c36444ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Intermittency</topic><topic>Kinetic theory</topic><topic>Physics</topic><topic>Weak wave turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chibbaro, Sergio</creatorcontrib><creatorcontrib>Dematteis, Giovanni</creatorcontrib><creatorcontrib>Rondoni, Lamberto</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chibbaro, Sergio</au><au>Dematteis, Giovanni</au><au>Rondoni, Lamberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>4-wave dynamics in kinetic wave turbulence</atitle><jtitle>Physica. D</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>362</volume><spage>24</spage><epage>59</epage><pages>24-59</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><abstract>A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an “interaction representation” and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman–Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.
•We deal with 4-wave Hamiltonian systems in the framework of wave turbulence.•Averaging technique based on the Feynman–Wyld diagrams.•Kinetic limit : leading order equations for the statistics evolution are derived.•Random-phase and random-phase and amplitude properties preserved in time.•Powerful tool to investigate many relevant physical systems.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physd.2017.09.001</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-4223-6279</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-2789 |
ispartof | Physica. D, 2018-01, Vol.362, p.24-59 |
issn | 0167-2789 1872-8022 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01684022v1 |
source | Elsevier ScienceDirect Journals |
subjects | Intermittency Kinetic theory Physics Weak wave turbulence |
title | 4-wave dynamics in kinetic wave turbulence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=4-wave%20dynamics%20in%20kinetic%20wave%20turbulence&rft.jtitle=Physica.%20D&rft.au=Chibbaro,%20Sergio&rft.date=2018-01-01&rft.volume=362&rft.spage=24&rft.epage=59&rft.pages=24-59&rft.issn=0167-2789&rft.eissn=1872-8022&rft_id=info:doi/10.1016/j.physd.2017.09.001&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01684022v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167278917301847&rfr_iscdi=true |