Isotope engineering of van der Waals interactions in hexagonal boron nitride

Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2018-02, Vol.17 (2), p.152-158
Hauptverfasser: Vuong, T. Q. P., Liu, S., Van der Lee, A., Cuscó, R., Artús, L., Michel, T., Valvin, P., Edgar, J. H., Cassabois, G., Gil, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue 2
container_start_page 152
container_title Nature materials
container_volume 17
creator Vuong, T. Q. P.
Liu, S.
Van der Lee, A.
Cuscó, R.
Artús, L.
Michel, T.
Valvin, P.
Edgar, J. H.
Cassabois, G.
Gil, B.
description Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials. Isotope engineering in hexagonal boron nitride can affect its vibrational, electronic and optical properties due to the isotope substitution, as well as induce a change in the van der Waals interactions.
doi_str_mv 10.1038/nmat5048
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01675183v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315957143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-ac81c9b699100fe678c911bc6b88f3f64cd432253d739a40400c34aa42ad4e493</originalsourceid><addsrcrecordid>eNp9kctKJDEUhsOgjFfwCSTgRhft5ORWlaXIeIEGNzPMMqRSp9pIddIm1Y2-_VRja4OCq3Ph4z-Xn5ATYJfARP0rzt2gmKx_kH2QlZ5IrdnOJgfgfI8clPLEGAel9E-yxw1XUHG-T6b3JQ1pgRTjLETEHOKMpo6uXKQtZvrPub7QEAfMzg8hxXVBH_HFzVJ0PW1STpHGMOTQ4hHZ7UYcjzfxkPy9-f3n-m4yfbi9v76aTryoYJg4X4M3jTYGGOtQV7U3AI3XTV13otPSt1JwrkRbCeMkk4x5IZ2T3LUSpRGH5OJN99H1dpHD3OVXm1ywd1dTu-4x0JWCWqxgZM_f2EVOz0ssg52H4rHvXcS0LBZMVQswSrIRPfuEPqVlHq8slgtQRlUgxbcU4xzGF4PejvU5lZKx-9gTmF17Zt89G9HTjeCymWP7Ab6btD23LNb2YN5O_CL2H7lynJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022115516</pqid></control><display><type>article</type><title>Isotope engineering of van der Waals interactions in hexagonal boron nitride</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Vuong, T. Q. P. ; Liu, S. ; Van der Lee, A. ; Cuscó, R. ; Artús, L. ; Michel, T. ; Valvin, P. ; Edgar, J. H. ; Cassabois, G. ; Gil, B.</creator><creatorcontrib>Vuong, T. Q. P. ; Liu, S. ; Van der Lee, A. ; Cuscó, R. ; Artús, L. ; Michel, T. ; Valvin, P. ; Edgar, J. H. ; Cassabois, G. ; Gil, B.</creatorcontrib><description>Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials. Isotope engineering in hexagonal boron nitride can affect its vibrational, electronic and optical properties due to the isotope substitution, as well as induce a change in the van der Waals interactions.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat5048</identifier><identifier>PMID: 29251722</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/119 ; 639/766/119/1000/1018 ; Adhesion ; Biomaterials ; Boron ; Boron compounds ; Boron isotopes ; Boron nitride ; Breathing ; Chemical Sciences ; Condensed Matter Physics ; Crystals ; Density distribution ; Electron density ; Honeycomb construction ; Isotopes ; Lattices ; Layered materials ; Materials Science ; Nanotechnology ; Nitrogen atoms ; Optical and Electronic Materials ; Reptiles &amp; amphibians ; Temperature dependence</subject><ispartof>Nature materials, 2018-02, Vol.17 (2), p.152-158</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Feb 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-ac81c9b699100fe678c911bc6b88f3f64cd432253d739a40400c34aa42ad4e493</citedby><cites>FETCH-LOGICAL-c371t-ac81c9b699100fe678c911bc6b88f3f64cd432253d739a40400c34aa42ad4e493</cites><orcidid>0000-0002-3046-3335 ; 0000-0003-0918-5964 ; 0000-0001-5997-4609 ; 0000-0002-4567-1831 ; 0000-0002-2356-2589 ; 0000-0002-1588-887X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat5048$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat5048$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29251722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.umontpellier.fr/hal-01675183$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vuong, T. Q. P.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Van der Lee, A.</creatorcontrib><creatorcontrib>Cuscó, R.</creatorcontrib><creatorcontrib>Artús, L.</creatorcontrib><creatorcontrib>Michel, T.</creatorcontrib><creatorcontrib>Valvin, P.</creatorcontrib><creatorcontrib>Edgar, J. H.</creatorcontrib><creatorcontrib>Cassabois, G.</creatorcontrib><creatorcontrib>Gil, B.</creatorcontrib><title>Isotope engineering of van der Waals interactions in hexagonal boron nitride</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials. Isotope engineering in hexagonal boron nitride can affect its vibrational, electronic and optical properties due to the isotope substitution, as well as induce a change in the van der Waals interactions.</description><subject>140/125</subject><subject>639/766/119</subject><subject>639/766/119/1000/1018</subject><subject>Adhesion</subject><subject>Biomaterials</subject><subject>Boron</subject><subject>Boron compounds</subject><subject>Boron isotopes</subject><subject>Boron nitride</subject><subject>Breathing</subject><subject>Chemical Sciences</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Density distribution</subject><subject>Electron density</subject><subject>Honeycomb construction</subject><subject>Isotopes</subject><subject>Lattices</subject><subject>Layered materials</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nitrogen atoms</subject><subject>Optical and Electronic Materials</subject><subject>Reptiles &amp; amphibians</subject><subject>Temperature dependence</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctKJDEUhsOgjFfwCSTgRhft5ORWlaXIeIEGNzPMMqRSp9pIddIm1Y2-_VRja4OCq3Ph4z-Xn5ATYJfARP0rzt2gmKx_kH2QlZ5IrdnOJgfgfI8clPLEGAel9E-yxw1XUHG-T6b3JQ1pgRTjLETEHOKMpo6uXKQtZvrPub7QEAfMzg8hxXVBH_HFzVJ0PW1STpHGMOTQ4hHZ7UYcjzfxkPy9-f3n-m4yfbi9v76aTryoYJg4X4M3jTYGGOtQV7U3AI3XTV13otPSt1JwrkRbCeMkk4x5IZ2T3LUSpRGH5OJN99H1dpHD3OVXm1ywd1dTu-4x0JWCWqxgZM_f2EVOz0ssg52H4rHvXcS0LBZMVQswSrIRPfuEPqVlHq8slgtQRlUgxbcU4xzGF4PejvU5lZKx-9gTmF17Zt89G9HTjeCymWP7Ab6btD23LNb2YN5O_CL2H7lynJA</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Vuong, T. Q. P.</creator><creator>Liu, S.</creator><creator>Van der Lee, A.</creator><creator>Cuscó, R.</creator><creator>Artús, L.</creator><creator>Michel, T.</creator><creator>Valvin, P.</creator><creator>Edgar, J. H.</creator><creator>Cassabois, G.</creator><creator>Gil, B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3046-3335</orcidid><orcidid>https://orcid.org/0000-0003-0918-5964</orcidid><orcidid>https://orcid.org/0000-0001-5997-4609</orcidid><orcidid>https://orcid.org/0000-0002-4567-1831</orcidid><orcidid>https://orcid.org/0000-0002-2356-2589</orcidid><orcidid>https://orcid.org/0000-0002-1588-887X</orcidid></search><sort><creationdate>20180201</creationdate><title>Isotope engineering of van der Waals interactions in hexagonal boron nitride</title><author>Vuong, T. Q. P. ; Liu, S. ; Van der Lee, A. ; Cuscó, R. ; Artús, L. ; Michel, T. ; Valvin, P. ; Edgar, J. H. ; Cassabois, G. ; Gil, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-ac81c9b699100fe678c911bc6b88f3f64cd432253d739a40400c34aa42ad4e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/125</topic><topic>639/766/119</topic><topic>639/766/119/1000/1018</topic><topic>Adhesion</topic><topic>Biomaterials</topic><topic>Boron</topic><topic>Boron compounds</topic><topic>Boron isotopes</topic><topic>Boron nitride</topic><topic>Breathing</topic><topic>Chemical Sciences</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Density distribution</topic><topic>Electron density</topic><topic>Honeycomb construction</topic><topic>Isotopes</topic><topic>Lattices</topic><topic>Layered materials</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nitrogen atoms</topic><topic>Optical and Electronic Materials</topic><topic>Reptiles &amp; amphibians</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vuong, T. Q. P.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Van der Lee, A.</creatorcontrib><creatorcontrib>Cuscó, R.</creatorcontrib><creatorcontrib>Artús, L.</creatorcontrib><creatorcontrib>Michel, T.</creatorcontrib><creatorcontrib>Valvin, P.</creatorcontrib><creatorcontrib>Edgar, J. H.</creatorcontrib><creatorcontrib>Cassabois, G.</creatorcontrib><creatorcontrib>Gil, B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vuong, T. Q. P.</au><au>Liu, S.</au><au>Van der Lee, A.</au><au>Cuscó, R.</au><au>Artús, L.</au><au>Michel, T.</au><au>Valvin, P.</au><au>Edgar, J. H.</au><au>Cassabois, G.</au><au>Gil, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isotope engineering of van der Waals interactions in hexagonal boron nitride</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>17</volume><issue>2</issue><spage>152</spage><epage>158</epage><pages>152-158</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials. Isotope engineering in hexagonal boron nitride can affect its vibrational, electronic and optical properties due to the isotope substitution, as well as induce a change in the van der Waals interactions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29251722</pmid><doi>10.1038/nmat5048</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3046-3335</orcidid><orcidid>https://orcid.org/0000-0003-0918-5964</orcidid><orcidid>https://orcid.org/0000-0001-5997-4609</orcidid><orcidid>https://orcid.org/0000-0002-4567-1831</orcidid><orcidid>https://orcid.org/0000-0002-2356-2589</orcidid><orcidid>https://orcid.org/0000-0002-1588-887X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2018-02, Vol.17 (2), p.152-158
issn 1476-1122
1476-4660
language eng
recordid cdi_hal_primary_oai_HAL_hal_01675183v1
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 140/125
639/766/119
639/766/119/1000/1018
Adhesion
Biomaterials
Boron
Boron compounds
Boron isotopes
Boron nitride
Breathing
Chemical Sciences
Condensed Matter Physics
Crystals
Density distribution
Electron density
Honeycomb construction
Isotopes
Lattices
Layered materials
Materials Science
Nanotechnology
Nitrogen atoms
Optical and Electronic Materials
Reptiles & amphibians
Temperature dependence
title Isotope engineering of van der Waals interactions in hexagonal boron nitride
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isotope%20engineering%20of%20van%20der%20Waals%20interactions%20in%20hexagonal%20boron%20nitride&rft.jtitle=Nature%20materials&rft.au=Vuong,%20T.%20Q.%20P.&rft.date=2018-02-01&rft.volume=17&rft.issue=2&rft.spage=152&rft.epage=158&rft.pages=152-158&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat5048&rft_dat=%3Cproquest_hal_p%3E2315957143%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022115516&rft_id=info:pmid/29251722&rfr_iscdi=true