Isotope engineering of van der Waals interactions in hexagonal boron nitride
Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal b...
Gespeichert in:
Veröffentlicht in: | Nature materials 2018-02, Vol.17 (2), p.152-158 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | 2 |
container_start_page | 152 |
container_title | Nature materials |
container_volume | 17 |
creator | Vuong, T. Q. P. Liu, S. Van der Lee, A. Cuscó, R. Artús, L. Michel, T. Valvin, P. Edgar, J. H. Cassabois, G. Gil, B. |
description | Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (
10
B and
11
B) compared to those with the natural distribution of boron (20 at%
10
B and 80 at%
11
B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in
10
BN than in
11
BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.
Isotope engineering in hexagonal boron nitride can affect its vibrational, electronic and optical properties due to the isotope substitution, as well as induce a change in the van der Waals interactions. |
doi_str_mv | 10.1038/nmat5048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01675183v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315957143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-ac81c9b699100fe678c911bc6b88f3f64cd432253d739a40400c34aa42ad4e493</originalsourceid><addsrcrecordid>eNp9kctKJDEUhsOgjFfwCSTgRhft5ORWlaXIeIEGNzPMMqRSp9pIddIm1Y2-_VRja4OCq3Ph4z-Xn5ATYJfARP0rzt2gmKx_kH2QlZ5IrdnOJgfgfI8clPLEGAel9E-yxw1XUHG-T6b3JQ1pgRTjLETEHOKMpo6uXKQtZvrPub7QEAfMzg8hxXVBH_HFzVJ0PW1STpHGMOTQ4hHZ7UYcjzfxkPy9-f3n-m4yfbi9v76aTryoYJg4X4M3jTYGGOtQV7U3AI3XTV13otPSt1JwrkRbCeMkk4x5IZ2T3LUSpRGH5OJN99H1dpHD3OVXm1ywd1dTu-4x0JWCWqxgZM_f2EVOz0ssg52H4rHvXcS0LBZMVQswSrIRPfuEPqVlHq8slgtQRlUgxbcU4xzGF4PejvU5lZKx-9gTmF17Zt89G9HTjeCymWP7Ab6btD23LNb2YN5O_CL2H7lynJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022115516</pqid></control><display><type>article</type><title>Isotope engineering of van der Waals interactions in hexagonal boron nitride</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Vuong, T. Q. P. ; Liu, S. ; Van der Lee, A. ; Cuscó, R. ; Artús, L. ; Michel, T. ; Valvin, P. ; Edgar, J. H. ; Cassabois, G. ; Gil, B.</creator><creatorcontrib>Vuong, T. Q. P. ; Liu, S. ; Van der Lee, A. ; Cuscó, R. ; Artús, L. ; Michel, T. ; Valvin, P. ; Edgar, J. H. ; Cassabois, G. ; Gil, B.</creatorcontrib><description>Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (
10
B and
11
B) compared to those with the natural distribution of boron (20 at%
10
B and 80 at%
11
B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in
10
BN than in
11
BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.
Isotope engineering in hexagonal boron nitride can affect its vibrational, electronic and optical properties due to the isotope substitution, as well as induce a change in the van der Waals interactions.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat5048</identifier><identifier>PMID: 29251722</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/766/119 ; 639/766/119/1000/1018 ; Adhesion ; Biomaterials ; Boron ; Boron compounds ; Boron isotopes ; Boron nitride ; Breathing ; Chemical Sciences ; Condensed Matter Physics ; Crystals ; Density distribution ; Electron density ; Honeycomb construction ; Isotopes ; Lattices ; Layered materials ; Materials Science ; Nanotechnology ; Nitrogen atoms ; Optical and Electronic Materials ; Reptiles & amphibians ; Temperature dependence</subject><ispartof>Nature materials, 2018-02, Vol.17 (2), p.152-158</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Feb 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-ac81c9b699100fe678c911bc6b88f3f64cd432253d739a40400c34aa42ad4e493</citedby><cites>FETCH-LOGICAL-c371t-ac81c9b699100fe678c911bc6b88f3f64cd432253d739a40400c34aa42ad4e493</cites><orcidid>0000-0002-3046-3335 ; 0000-0003-0918-5964 ; 0000-0001-5997-4609 ; 0000-0002-4567-1831 ; 0000-0002-2356-2589 ; 0000-0002-1588-887X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat5048$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat5048$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29251722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.umontpellier.fr/hal-01675183$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vuong, T. Q. P.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Van der Lee, A.</creatorcontrib><creatorcontrib>Cuscó, R.</creatorcontrib><creatorcontrib>Artús, L.</creatorcontrib><creatorcontrib>Michel, T.</creatorcontrib><creatorcontrib>Valvin, P.</creatorcontrib><creatorcontrib>Edgar, J. H.</creatorcontrib><creatorcontrib>Cassabois, G.</creatorcontrib><creatorcontrib>Gil, B.</creatorcontrib><title>Isotope engineering of van der Waals interactions in hexagonal boron nitride</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (
10
B and
11
B) compared to those with the natural distribution of boron (20 at%
10
B and 80 at%
11
B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in
10
BN than in
11
BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.
Isotope engineering in hexagonal boron nitride can affect its vibrational, electronic and optical properties due to the isotope substitution, as well as induce a change in the van der Waals interactions.</description><subject>140/125</subject><subject>639/766/119</subject><subject>639/766/119/1000/1018</subject><subject>Adhesion</subject><subject>Biomaterials</subject><subject>Boron</subject><subject>Boron compounds</subject><subject>Boron isotopes</subject><subject>Boron nitride</subject><subject>Breathing</subject><subject>Chemical Sciences</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Density distribution</subject><subject>Electron density</subject><subject>Honeycomb construction</subject><subject>Isotopes</subject><subject>Lattices</subject><subject>Layered materials</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nitrogen atoms</subject><subject>Optical and Electronic Materials</subject><subject>Reptiles & amphibians</subject><subject>Temperature dependence</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctKJDEUhsOgjFfwCSTgRhft5ORWlaXIeIEGNzPMMqRSp9pIddIm1Y2-_VRja4OCq3Ph4z-Xn5ATYJfARP0rzt2gmKx_kH2QlZ5IrdnOJgfgfI8clPLEGAel9E-yxw1XUHG-T6b3JQ1pgRTjLETEHOKMpo6uXKQtZvrPub7QEAfMzg8hxXVBH_HFzVJ0PW1STpHGMOTQ4hHZ7UYcjzfxkPy9-f3n-m4yfbi9v76aTryoYJg4X4M3jTYGGOtQV7U3AI3XTV13otPSt1JwrkRbCeMkk4x5IZ2T3LUSpRGH5OJN99H1dpHD3OVXm1ywd1dTu-4x0JWCWqxgZM_f2EVOz0ssg52H4rHvXcS0LBZMVQswSrIRPfuEPqVlHq8slgtQRlUgxbcU4xzGF4PejvU5lZKx-9gTmF17Zt89G9HTjeCymWP7Ab6btD23LNb2YN5O_CL2H7lynJA</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Vuong, T. Q. P.</creator><creator>Liu, S.</creator><creator>Van der Lee, A.</creator><creator>Cuscó, R.</creator><creator>Artús, L.</creator><creator>Michel, T.</creator><creator>Valvin, P.</creator><creator>Edgar, J. H.</creator><creator>Cassabois, G.</creator><creator>Gil, B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3046-3335</orcidid><orcidid>https://orcid.org/0000-0003-0918-5964</orcidid><orcidid>https://orcid.org/0000-0001-5997-4609</orcidid><orcidid>https://orcid.org/0000-0002-4567-1831</orcidid><orcidid>https://orcid.org/0000-0002-2356-2589</orcidid><orcidid>https://orcid.org/0000-0002-1588-887X</orcidid></search><sort><creationdate>20180201</creationdate><title>Isotope engineering of van der Waals interactions in hexagonal boron nitride</title><author>Vuong, T. Q. P. ; Liu, S. ; Van der Lee, A. ; Cuscó, R. ; Artús, L. ; Michel, T. ; Valvin, P. ; Edgar, J. H. ; Cassabois, G. ; Gil, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-ac81c9b699100fe678c911bc6b88f3f64cd432253d739a40400c34aa42ad4e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/125</topic><topic>639/766/119</topic><topic>639/766/119/1000/1018</topic><topic>Adhesion</topic><topic>Biomaterials</topic><topic>Boron</topic><topic>Boron compounds</topic><topic>Boron isotopes</topic><topic>Boron nitride</topic><topic>Breathing</topic><topic>Chemical Sciences</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Density distribution</topic><topic>Electron density</topic><topic>Honeycomb construction</topic><topic>Isotopes</topic><topic>Lattices</topic><topic>Layered materials</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nitrogen atoms</topic><topic>Optical and Electronic Materials</topic><topic>Reptiles & amphibians</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vuong, T. Q. P.</creatorcontrib><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Van der Lee, A.</creatorcontrib><creatorcontrib>Cuscó, R.</creatorcontrib><creatorcontrib>Artús, L.</creatorcontrib><creatorcontrib>Michel, T.</creatorcontrib><creatorcontrib>Valvin, P.</creatorcontrib><creatorcontrib>Edgar, J. H.</creatorcontrib><creatorcontrib>Cassabois, G.</creatorcontrib><creatorcontrib>Gil, B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vuong, T. Q. P.</au><au>Liu, S.</au><au>Van der Lee, A.</au><au>Cuscó, R.</au><au>Artús, L.</au><au>Michel, T.</au><au>Valvin, P.</au><au>Edgar, J. H.</au><au>Cassabois, G.</au><au>Gil, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isotope engineering of van der Waals interactions in hexagonal boron nitride</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>17</volume><issue>2</issue><spage>152</spage><epage>158</epage><pages>152-158</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (
10
B and
11
B) compared to those with the natural distribution of boron (20 at%
10
B and 80 at%
11
B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in
10
BN than in
11
BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.
Isotope engineering in hexagonal boron nitride can affect its vibrational, electronic and optical properties due to the isotope substitution, as well as induce a change in the van der Waals interactions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29251722</pmid><doi>10.1038/nmat5048</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3046-3335</orcidid><orcidid>https://orcid.org/0000-0003-0918-5964</orcidid><orcidid>https://orcid.org/0000-0001-5997-4609</orcidid><orcidid>https://orcid.org/0000-0002-4567-1831</orcidid><orcidid>https://orcid.org/0000-0002-2356-2589</orcidid><orcidid>https://orcid.org/0000-0002-1588-887X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2018-02, Vol.17 (2), p.152-158 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01675183v1 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 140/125 639/766/119 639/766/119/1000/1018 Adhesion Biomaterials Boron Boron compounds Boron isotopes Boron nitride Breathing Chemical Sciences Condensed Matter Physics Crystals Density distribution Electron density Honeycomb construction Isotopes Lattices Layered materials Materials Science Nanotechnology Nitrogen atoms Optical and Electronic Materials Reptiles & amphibians Temperature dependence |
title | Isotope engineering of van der Waals interactions in hexagonal boron nitride |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A32%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isotope%20engineering%20of%20van%20der%20Waals%20interactions%20in%20hexagonal%20boron%20nitride&rft.jtitle=Nature%20materials&rft.au=Vuong,%20T.%20Q.%20P.&rft.date=2018-02-01&rft.volume=17&rft.issue=2&rft.spage=152&rft.epage=158&rft.pages=152-158&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat5048&rft_dat=%3Cproquest_hal_p%3E2315957143%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022115516&rft_id=info:pmid/29251722&rfr_iscdi=true |