A Universal Framework for Salient Object Detection

In this paper, we propose a novel universal framework for salient object detection, which aims to enhance the performance of any existing saliency detection method. First, rough salient regions are extracted from any existing saliency detection model with distance weighting, adaptive binarization, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2016-09, Vol.18 (9), p.1783-1795
Hauptverfasser: Jianjun Lei, Bingren Wang, Yuming Fang, Weisi Lin, Le Callet, Patrick, Nam Ling, Chunping Hou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1795
container_issue 9
container_start_page 1783
container_title IEEE transactions on multimedia
container_volume 18
creator Jianjun Lei
Bingren Wang
Yuming Fang
Weisi Lin
Le Callet, Patrick
Nam Ling
Chunping Hou
description In this paper, we propose a novel universal framework for salient object detection, which aims to enhance the performance of any existing saliency detection method. First, rough salient regions are extracted from any existing saliency detection model with distance weighting, adaptive binarization, and morphological closing. With the superpixel segmentation, a Bayesian decision model is adopted to refine the rough saliency map to obtain a more accurate saliency map. An iterative optimization method is designed to obtain better saliency results by exploiting the characteristics of the output saliency map each time. Through the iterative optimization process, the rough saliency map is updated step by step with better and better performance until an optimal saliency map is obtained. Experimental results on the public salient object detection datasets with ground truth demonstrate the promising performance of the proposed universal framework subjectively and objectively.
doi_str_mv 10.1109/TMM.2016.2592325
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01675158v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7514760</ieee_id><sourcerecordid>4147271071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d45de58050288ea202429f79ac376fee9676dc306c2580449eb68ada8e8925863</originalsourceid><addsrcrecordid>eNpd0EFPwjAUB_DGaCKidxMvS7zoYfjarl17JChiAuEgnJuyvcXhWLEdGL-9JRAPnl7z8nvNe39CbikMKAX9tJjNBgyoHDChGWfijPSozmgKkOfn8S0YpJpRuCRXIawBaCYg7xE2TJZtvUcfbJOMvd3gt_OfSeV88m6bGtsuma_WWHTJM3ax1K69JheVbQLenGqfLMcvi9Eknc5f30bDaVpwobq0zESJQoEAphRaBixjusq1LXguK0Qtc1kWHGTBosoyjSupbGkVKh07kvfJ4_HfD9uYra831v8YZ2szGU7NoRevzQUVak-jfTjarXdfOwyd2dShwKaxLbpdMFRxIUEB1ZHe_6Nrt_NtvCQqSrmgXLGo4KgK70LwWP1tQMEcAjcxcHMI3JwCjyN3x5EaEf943DDLJfBfZzx4AQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811351382</pqid></control><display><type>article</type><title>A Universal Framework for Salient Object Detection</title><source>IEEE Xplore Digital Library</source><creator>Jianjun Lei ; Bingren Wang ; Yuming Fang ; Weisi Lin ; Le Callet, Patrick ; Nam Ling ; Chunping Hou</creator><creatorcontrib>Jianjun Lei ; Bingren Wang ; Yuming Fang ; Weisi Lin ; Le Callet, Patrick ; Nam Ling ; Chunping Hou</creatorcontrib><description>In this paper, we propose a novel universal framework for salient object detection, which aims to enhance the performance of any existing saliency detection method. First, rough salient regions are extracted from any existing saliency detection model with distance weighting, adaptive binarization, and morphological closing. With the superpixel segmentation, a Bayesian decision model is adopted to refine the rough saliency map to obtain a more accurate saliency map. An iterative optimization method is designed to obtain better saliency results by exploiting the characteristics of the output saliency map each time. Through the iterative optimization process, the rough saliency map is updated step by step with better and better performance until an optimal saliency map is obtained. Experimental results on the public salient object detection datasets with ground truth demonstrate the promising performance of the proposed universal framework subjectively and objectively.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2016.2592325</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Bayesian analysis ; Computational modeling ; Computer Science ; Feature extraction ; Ground truth ; Image color analysis ; Image Processing ; Iterative methods ; Iterative optimization ; Multimedia ; Object detection ; Object recognition ; Optimization ; salient object detection ; Segmentation ; universal framework ; visual attention ; Visualization ; Weighting</subject><ispartof>IEEE transactions on multimedia, 2016-09, Vol.18 (9), p.1783-1795</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d45de58050288ea202429f79ac376fee9676dc306c2580449eb68ada8e8925863</citedby><cites>FETCH-LOGICAL-c358t-d45de58050288ea202429f79ac376fee9676dc306c2580449eb68ada8e8925863</cites><orcidid>0000-0002-2143-7063 ; 0000-0003-3171-7680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7514760$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7514760$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01675158$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jianjun Lei</creatorcontrib><creatorcontrib>Bingren Wang</creatorcontrib><creatorcontrib>Yuming Fang</creatorcontrib><creatorcontrib>Weisi Lin</creatorcontrib><creatorcontrib>Le Callet, Patrick</creatorcontrib><creatorcontrib>Nam Ling</creatorcontrib><creatorcontrib>Chunping Hou</creatorcontrib><title>A Universal Framework for Salient Object Detection</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>In this paper, we propose a novel universal framework for salient object detection, which aims to enhance the performance of any existing saliency detection method. First, rough salient regions are extracted from any existing saliency detection model with distance weighting, adaptive binarization, and morphological closing. With the superpixel segmentation, a Bayesian decision model is adopted to refine the rough saliency map to obtain a more accurate saliency map. An iterative optimization method is designed to obtain better saliency results by exploiting the characteristics of the output saliency map each time. Through the iterative optimization process, the rough saliency map is updated step by step with better and better performance until an optimal saliency map is obtained. Experimental results on the public salient object detection datasets with ground truth demonstrate the promising performance of the proposed universal framework subjectively and objectively.</description><subject>Adaptation models</subject><subject>Bayesian analysis</subject><subject>Computational modeling</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Ground truth</subject><subject>Image color analysis</subject><subject>Image Processing</subject><subject>Iterative methods</subject><subject>Iterative optimization</subject><subject>Multimedia</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>salient object detection</subject><subject>Segmentation</subject><subject>universal framework</subject><subject>visual attention</subject><subject>Visualization</subject><subject>Weighting</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0EFPwjAUB_DGaCKidxMvS7zoYfjarl17JChiAuEgnJuyvcXhWLEdGL-9JRAPnl7z8nvNe39CbikMKAX9tJjNBgyoHDChGWfijPSozmgKkOfn8S0YpJpRuCRXIawBaCYg7xE2TJZtvUcfbJOMvd3gt_OfSeV88m6bGtsuma_WWHTJM3ax1K69JheVbQLenGqfLMcvi9Eknc5f30bDaVpwobq0zESJQoEAphRaBixjusq1LXguK0Qtc1kWHGTBosoyjSupbGkVKh07kvfJ4_HfD9uYra831v8YZ2szGU7NoRevzQUVak-jfTjarXdfOwyd2dShwKaxLbpdMFRxIUEB1ZHe_6Nrt_NtvCQqSrmgXLGo4KgK70LwWP1tQMEcAjcxcHMI3JwCjyN3x5EaEf943DDLJfBfZzx4AQ</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Jianjun Lei</creator><creator>Bingren Wang</creator><creator>Yuming Fang</creator><creator>Weisi Lin</creator><creator>Le Callet, Patrick</creator><creator>Nam Ling</creator><creator>Chunping Hou</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2143-7063</orcidid><orcidid>https://orcid.org/0000-0003-3171-7680</orcidid></search><sort><creationdate>20160901</creationdate><title>A Universal Framework for Salient Object Detection</title><author>Jianjun Lei ; Bingren Wang ; Yuming Fang ; Weisi Lin ; Le Callet, Patrick ; Nam Ling ; Chunping Hou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d45de58050288ea202429f79ac376fee9676dc306c2580449eb68ada8e8925863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>Bayesian analysis</topic><topic>Computational modeling</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Ground truth</topic><topic>Image color analysis</topic><topic>Image Processing</topic><topic>Iterative methods</topic><topic>Iterative optimization</topic><topic>Multimedia</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>salient object detection</topic><topic>Segmentation</topic><topic>universal framework</topic><topic>visual attention</topic><topic>Visualization</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianjun Lei</creatorcontrib><creatorcontrib>Bingren Wang</creatorcontrib><creatorcontrib>Yuming Fang</creatorcontrib><creatorcontrib>Weisi Lin</creatorcontrib><creatorcontrib>Le Callet, Patrick</creatorcontrib><creatorcontrib>Nam Ling</creatorcontrib><creatorcontrib>Chunping Hou</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore Digital Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianjun Lei</au><au>Bingren Wang</au><au>Yuming Fang</au><au>Weisi Lin</au><au>Le Callet, Patrick</au><au>Nam Ling</au><au>Chunping Hou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Universal Framework for Salient Object Detection</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>18</volume><issue>9</issue><spage>1783</spage><epage>1795</epage><pages>1783-1795</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>In this paper, we propose a novel universal framework for salient object detection, which aims to enhance the performance of any existing saliency detection method. First, rough salient regions are extracted from any existing saliency detection model with distance weighting, adaptive binarization, and morphological closing. With the superpixel segmentation, a Bayesian decision model is adopted to refine the rough saliency map to obtain a more accurate saliency map. An iterative optimization method is designed to obtain better saliency results by exploiting the characteristics of the output saliency map each time. Through the iterative optimization process, the rough saliency map is updated step by step with better and better performance until an optimal saliency map is obtained. Experimental results on the public salient object detection datasets with ground truth demonstrate the promising performance of the proposed universal framework subjectively and objectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2016.2592325</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2143-7063</orcidid><orcidid>https://orcid.org/0000-0003-3171-7680</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2016-09, Vol.18 (9), p.1783-1795
issn 1520-9210
1941-0077
language eng
recordid cdi_hal_primary_oai_HAL_hal_01675158v1
source IEEE Xplore Digital Library
subjects Adaptation models
Bayesian analysis
Computational modeling
Computer Science
Feature extraction
Ground truth
Image color analysis
Image Processing
Iterative methods
Iterative optimization
Multimedia
Object detection
Object recognition
Optimization
salient object detection
Segmentation
universal framework
visual attention
Visualization
Weighting
title A Universal Framework for Salient Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Universal%20Framework%20for%20Salient%20Object%20Detection&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Jianjun%20Lei&rft.date=2016-09-01&rft.volume=18&rft.issue=9&rft.spage=1783&rft.epage=1795&rft.pages=1783-1795&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2016.2592325&rft_dat=%3Cproquest_RIE%3E4147271071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811351382&rft_id=info:pmid/&rft_ieee_id=7514760&rfr_iscdi=true