Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media
The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for p...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2016-06, Vol.120 (24), p.5491-5504 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5504 |
---|---|
container_issue | 24 |
container_start_page | 5491 |
container_title | The journal of physical chemistry. B |
container_volume | 120 |
creator | Chen, W Zhao, S. L Holovko, M Chen, X. S Dong, W |
description | The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way. |
doi_str_mv | 10.1021/acs.jpcb.6b02957 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01671988v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1799561330</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-2ce3c240f26deff6d1f8d571df3dc0a65d3b4fc005f64d771ea996036ca571973</originalsourceid><addsrcrecordid>eNp1kE1PAjEURRujEUT3rkyXmgi-dpiWWRIiYgKRCO5MmtKPMGRmOraMCf_eIsjOxUtfXs69aQ5CtwR6BCh5kir0NrVa9dgKaJbyM9QmKYVuHH5-3BkB1kJXIWwAaEoH7BK1KKdZn3Foo8-FkoXReC79NleFwcu1cX6HrfN41hTx5sraVaba4on0Gi_qtfEGj4sm1wGPXGXzKsbzCr_LSrsSz513TcAzo3N5jS6sLIK5Ob4d9DF-Xo4m3enby-toOO3KhMO2S5VJFO2DpUwba5kmdqBTTrRNtALJUp2s-lYBpJb1NefEyCxjkDAlI5XxpIMeDr1rWYja56X0O-FkLibDqdjfgLAIDgbfJLL3B7b27qsxYSvKPChTFLIy8eOC8CxLGUkSiCgcUOVdCN7YUzcBsfcvon-x9y-O_mPk7tjerEqjT4E_4RF4PAC_Udf4Kor5v-8H7R6QpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799561330</pqid></control><display><type>article</type><title>Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media</title><source>ACS Publications</source><creator>Chen, W ; Zhao, S. L ; Holovko, M ; Chen, X. S ; Dong, W</creator><creatorcontrib>Chen, W ; Zhao, S. L ; Holovko, M ; Chen, X. S ; Dong, W</creatorcontrib><description>The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.6b02957</identifier><identifier>PMID: 27294670</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences ; Condensed Matter ; or physical chemistry ; Physics ; Soft Condensed Matter ; Statistical Mechanics ; Theoretical and</subject><ispartof>The journal of physical chemistry. B, 2016-06, Vol.120 (24), p.5491-5504</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-2ce3c240f26deff6d1f8d571df3dc0a65d3b4fc005f64d771ea996036ca571973</citedby><cites>FETCH-LOGICAL-a370t-2ce3c240f26deff6d1f8d571df3dc0a65d3b4fc005f64d771ea996036ca571973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.6b02957$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.6b02957$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27294670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01671988$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, W</creatorcontrib><creatorcontrib>Zhao, S. L</creatorcontrib><creatorcontrib>Holovko, M</creatorcontrib><creatorcontrib>Chen, X. S</creatorcontrib><creatorcontrib>Dong, W</creatorcontrib><title>Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.</description><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>or physical chemistry</subject><subject>Physics</subject><subject>Soft Condensed Matter</subject><subject>Statistical Mechanics</subject><subject>Theoretical and</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEURRujEUT3rkyXmgi-dpiWWRIiYgKRCO5MmtKPMGRmOraMCf_eIsjOxUtfXs69aQ5CtwR6BCh5kir0NrVa9dgKaJbyM9QmKYVuHH5-3BkB1kJXIWwAaEoH7BK1KKdZn3Foo8-FkoXReC79NleFwcu1cX6HrfN41hTx5sraVaba4on0Gi_qtfEGj4sm1wGPXGXzKsbzCr_LSrsSz513TcAzo3N5jS6sLIK5Ob4d9DF-Xo4m3enby-toOO3KhMO2S5VJFO2DpUwba5kmdqBTTrRNtALJUp2s-lYBpJb1NefEyCxjkDAlI5XxpIMeDr1rWYja56X0O-FkLibDqdjfgLAIDgbfJLL3B7b27qsxYSvKPChTFLIy8eOC8CxLGUkSiCgcUOVdCN7YUzcBsfcvon-x9y-O_mPk7tjerEqjT4E_4RF4PAC_Udf4Kor5v-8H7R6QpQ</recordid><startdate>20160623</startdate><enddate>20160623</enddate><creator>Chen, W</creator><creator>Zhao, S. L</creator><creator>Holovko, M</creator><creator>Chen, X. S</creator><creator>Dong, W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20160623</creationdate><title>Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media</title><author>Chen, W ; Zhao, S. L ; Holovko, M ; Chen, X. S ; Dong, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-2ce3c240f26deff6d1f8d571df3dc0a65d3b4fc005f64d771ea996036ca571973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>or physical chemistry</topic><topic>Physics</topic><topic>Soft Condensed Matter</topic><topic>Statistical Mechanics</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, W</creatorcontrib><creatorcontrib>Zhao, S. L</creatorcontrib><creatorcontrib>Holovko, M</creatorcontrib><creatorcontrib>Chen, X. S</creatorcontrib><creatorcontrib>Dong, W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, W</au><au>Zhao, S. L</au><au>Holovko, M</au><au>Chen, X. S</au><au>Dong, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2016-06-23</date><risdate>2016</risdate><volume>120</volume><issue>24</issue><spage>5491</spage><epage>5504</epage><pages>5491-5504</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27294670</pmid><doi>10.1021/acs.jpcb.6b02957</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2016-06, Vol.120 (24), p.5491-5504 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01671988v1 |
source | ACS Publications |
subjects | Chemical Sciences Condensed Matter or physical chemistry Physics Soft Condensed Matter Statistical Mechanics Theoretical and |
title | Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaled%20Particle%20Theory%20for%20Multicomponent%20Hard%20Sphere%20Fluids%20Confined%20in%20Random%20Porous%20Media&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Chen,%20W&rft.date=2016-06-23&rft.volume=120&rft.issue=24&rft.spage=5491&rft.epage=5504&rft.pages=5491-5504&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.6b02957&rft_dat=%3Cproquest_hal_p%3E1799561330%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799561330&rft_id=info:pmid/27294670&rfr_iscdi=true |