Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media

The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2016-06, Vol.120 (24), p.5491-5504
Hauptverfasser: Chen, W, Zhao, S. L, Holovko, M, Chen, X. S, Dong, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5504
container_issue 24
container_start_page 5491
container_title The journal of physical chemistry. B
container_volume 120
creator Chen, W
Zhao, S. L
Holovko, M
Chen, X. S
Dong, W
description The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.
doi_str_mv 10.1021/acs.jpcb.6b02957
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01671988v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1799561330</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-2ce3c240f26deff6d1f8d571df3dc0a65d3b4fc005f64d771ea996036ca571973</originalsourceid><addsrcrecordid>eNp1kE1PAjEURRujEUT3rkyXmgi-dpiWWRIiYgKRCO5MmtKPMGRmOraMCf_eIsjOxUtfXs69aQ5CtwR6BCh5kir0NrVa9dgKaJbyM9QmKYVuHH5-3BkB1kJXIWwAaEoH7BK1KKdZn3Foo8-FkoXReC79NleFwcu1cX6HrfN41hTx5sraVaba4on0Gi_qtfEGj4sm1wGPXGXzKsbzCr_LSrsSz513TcAzo3N5jS6sLIK5Ob4d9DF-Xo4m3enby-toOO3KhMO2S5VJFO2DpUwba5kmdqBTTrRNtALJUp2s-lYBpJb1NefEyCxjkDAlI5XxpIMeDr1rWYja56X0O-FkLibDqdjfgLAIDgbfJLL3B7b27qsxYSvKPChTFLIy8eOC8CxLGUkSiCgcUOVdCN7YUzcBsfcvon-x9y-O_mPk7tjerEqjT4E_4RF4PAC_Udf4Kor5v-8H7R6QpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1799561330</pqid></control><display><type>article</type><title>Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media</title><source>ACS Publications</source><creator>Chen, W ; Zhao, S. L ; Holovko, M ; Chen, X. S ; Dong, W</creator><creatorcontrib>Chen, W ; Zhao, S. L ; Holovko, M ; Chen, X. S ; Dong, W</creatorcontrib><description>The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.6b02957</identifier><identifier>PMID: 27294670</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemical Sciences ; Condensed Matter ; or physical chemistry ; Physics ; Soft Condensed Matter ; Statistical Mechanics ; Theoretical and</subject><ispartof>The journal of physical chemistry. B, 2016-06, Vol.120 (24), p.5491-5504</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-2ce3c240f26deff6d1f8d571df3dc0a65d3b4fc005f64d771ea996036ca571973</citedby><cites>FETCH-LOGICAL-a370t-2ce3c240f26deff6d1f8d571df3dc0a65d3b4fc005f64d771ea996036ca571973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.6b02957$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.6b02957$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27294670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01671988$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, W</creatorcontrib><creatorcontrib>Zhao, S. L</creatorcontrib><creatorcontrib>Holovko, M</creatorcontrib><creatorcontrib>Chen, X. S</creatorcontrib><creatorcontrib>Dong, W</creatorcontrib><title>Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.</description><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>or physical chemistry</subject><subject>Physics</subject><subject>Soft Condensed Matter</subject><subject>Statistical Mechanics</subject><subject>Theoretical and</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEURRujEUT3rkyXmgi-dpiWWRIiYgKRCO5MmtKPMGRmOraMCf_eIsjOxUtfXs69aQ5CtwR6BCh5kir0NrVa9dgKaJbyM9QmKYVuHH5-3BkB1kJXIWwAaEoH7BK1KKdZn3Foo8-FkoXReC79NleFwcu1cX6HrfN41hTx5sraVaba4on0Gi_qtfEGj4sm1wGPXGXzKsbzCr_LSrsSz513TcAzo3N5jS6sLIK5Ob4d9DF-Xo4m3enby-toOO3KhMO2S5VJFO2DpUwba5kmdqBTTrRNtALJUp2s-lYBpJb1NefEyCxjkDAlI5XxpIMeDr1rWYja56X0O-FkLibDqdjfgLAIDgbfJLL3B7b27qsxYSvKPChTFLIy8eOC8CxLGUkSiCgcUOVdCN7YUzcBsfcvon-x9y-O_mPk7tjerEqjT4E_4RF4PAC_Udf4Kor5v-8H7R6QpQ</recordid><startdate>20160623</startdate><enddate>20160623</enddate><creator>Chen, W</creator><creator>Zhao, S. L</creator><creator>Holovko, M</creator><creator>Chen, X. S</creator><creator>Dong, W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20160623</creationdate><title>Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media</title><author>Chen, W ; Zhao, S. L ; Holovko, M ; Chen, X. S ; Dong, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-2ce3c240f26deff6d1f8d571df3dc0a65d3b4fc005f64d771ea996036ca571973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>or physical chemistry</topic><topic>Physics</topic><topic>Soft Condensed Matter</topic><topic>Statistical Mechanics</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, W</creatorcontrib><creatorcontrib>Zhao, S. L</creatorcontrib><creatorcontrib>Holovko, M</creatorcontrib><creatorcontrib>Chen, X. S</creatorcontrib><creatorcontrib>Dong, W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, W</au><au>Zhao, S. L</au><au>Holovko, M</au><au>Chen, X. S</au><au>Dong, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2016-06-23</date><risdate>2016</risdate><volume>120</volume><issue>24</issue><spage>5491</spage><epage>5504</epage><pages>5491-5504</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27294670</pmid><doi>10.1021/acs.jpcb.6b02957</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2016-06, Vol.120 (24), p.5491-5504
issn 1520-6106
1520-5207
language eng
recordid cdi_hal_primary_oai_HAL_hal_01671988v1
source ACS Publications
subjects Chemical Sciences
Condensed Matter
or physical chemistry
Physics
Soft Condensed Matter
Statistical Mechanics
Theoretical and
title Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaled%20Particle%20Theory%20for%20Multicomponent%20Hard%20Sphere%20Fluids%20Confined%20in%20Random%20Porous%20Media&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Chen,%20W&rft.date=2016-06-23&rft.volume=120&rft.issue=24&rft.spage=5491&rft.epage=5504&rft.pages=5491-5504&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.6b02957&rft_dat=%3Cproquest_hal_p%3E1799561330%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1799561330&rft_id=info:pmid/27294670&rfr_iscdi=true