A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences

We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary-layer meteorology 2018-04, Vol.167 (1), p.27-51
Hauptverfasser: Calmet, Isabelle, Mestayer, Patrice G., van Eijk, Alexander M. J., Herlédant, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 27
container_title Boundary-layer meteorology
container_volume 167
creator Calmet, Isabelle
Mestayer, Patrice G.
van Eijk, Alexander M. J.
Herlédant, Olivier
description We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested computational domains with increasing horizontal resolution down to 100 m, and a vertical resolution of 10 m at the lowest level, are used to reproduce the local-scale variations of the breeze close to the water surface of the bay. The Weather Research and Forecasting mesoscale model is used to assimilate the meteorological data. Comparisons of the simulations with the experimental data obtained at three sites reveal a good agreement of the flow over the bay and around the Quiberon peninsula during the daytime periods of sea-breeze development and weakening. In conditions of offshore synoptic flow, the simulations demonstrate that the semi-circular shape of the bay induces a corresponding circular shape in the offshore zones of stagnant flow preceding the sea-breeze onset, which move further offshore thereafter. The higher-resolution simulations are successful in reproducing the small-scale impacts of the peninsula and local coasts (breeze deviations, wakes, flow divergences), and in demonstrating the complexity of the breeze fields close to the surface over the bay. Our reanalysis also provides guidance for numerical simulation strategies for analyzing the structure and evolution of the near-surface breeze over a semi-circular bay, and for forecasting important flow details for use in upcoming sailing competitions.
doi_str_mv 10.1007/s10546-017-0319-1
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01671220v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A530406535</galeid><sourcerecordid>A530406535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-ef951f5d546a5250be3e12140b25e824cf8d84c08777468cdf4dce397ec1a9403</originalsourceid><addsrcrecordid>eNp1kV-L1DAUxYMoOI5-AN8CPglmzc2fpvVtdtCdhUGF0eeQSW9mu3SaNWmF8dObbkV8kTyEnJzf5SSHkNfAr4Bz8z4D16piHAzjEhoGT8gKtJEMlBFPyYpzXrFagnpOXuR8X44GNF-RYUO30eXR9fTaXehhOp8x0euE-AvpYZzayzv61aWRig90153uWMIc-2ns4kA_T8Xb-YIeuvPUu0cxBnpAx47LhH2cr2-H0E84eMwvybPg-oyv_uxr8v3Tx2_bHdt_ubndbvbMy7oZGYZGQ9BteZLTQvMjSgQBih-FxlooH-q2Vp7XxhhV1b4NqvUoG4MeXKO4XJO3y9w719uH1J1dutjoOrvb7O2scagMCMF_QvG-WbwPKf6YMI_2Pk5pKPEsNEbURurykWtytbhOrkfbDSGOyfmyWjx3Pg4YuqJvtOSKV1rqAsAC-BRzThj-5gBu587s0lmJYuzcmZ2jiIXJxTucMP0T5b_Qbz3AlvM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972873557</pqid></control><display><type>article</type><title>A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences</title><source>Springer Nature - Complete Springer Journals</source><creator>Calmet, Isabelle ; Mestayer, Patrice G. ; van Eijk, Alexander M. J. ; Herlédant, Olivier</creator><creatorcontrib>Calmet, Isabelle ; Mestayer, Patrice G. ; van Eijk, Alexander M. J. ; Herlédant, Olivier</creatorcontrib><description>We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested computational domains with increasing horizontal resolution down to 100 m, and a vertical resolution of 10 m at the lowest level, are used to reproduce the local-scale variations of the breeze close to the water surface of the bay. The Weather Research and Forecasting mesoscale model is used to assimilate the meteorological data. Comparisons of the simulations with the experimental data obtained at three sites reveal a good agreement of the flow over the bay and around the Quiberon peninsula during the daytime periods of sea-breeze development and weakening. In conditions of offshore synoptic flow, the simulations demonstrate that the semi-circular shape of the bay induces a corresponding circular shape in the offshore zones of stagnant flow preceding the sea-breeze onset, which move further offshore thereafter. The higher-resolution simulations are successful in reproducing the small-scale impacts of the peninsula and local coasts (breeze deviations, wakes, flow divergences), and in demonstrating the complexity of the breeze fields close to the surface over the bay. Our reanalysis also provides guidance for numerical simulation strategies for analyzing the structure and evolution of the near-surface breeze over a semi-circular bay, and for forecasting important flow details for use in upcoming sailing competitions.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-017-0319-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Advertising campaigns ; Analysis ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Circularity ; Coastal environments ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Data processing ; Earth and Environmental Science ; Earth Sciences ; Evolution ; Fluid mechanics ; Mathematical models ; Mechanics ; Meteorological data ; Meteorological research ; Meteorology ; Numerical analysis ; Numerical simulations ; Offshore ; Offshore oil fields ; Physics ; Research Article ; Resolution ; Sailing ; Sciences of the Universe ; Shape ; Simulation ; Wakes ; Weather forecasting</subject><ispartof>Boundary-layer meteorology, 2018-04, Vol.167 (1), p.27-51</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Boundary-Layer Meteorology is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-ef951f5d546a5250be3e12140b25e824cf8d84c08777468cdf4dce397ec1a9403</citedby><cites>FETCH-LOGICAL-c389t-ef951f5d546a5250be3e12140b25e824cf8d84c08777468cdf4dce397ec1a9403</cites><orcidid>0000-0002-4777-1510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-017-0319-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-017-0319-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01671220$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calmet, Isabelle</creatorcontrib><creatorcontrib>Mestayer, Patrice G.</creatorcontrib><creatorcontrib>van Eijk, Alexander M. J.</creatorcontrib><creatorcontrib>Herlédant, Olivier</creatorcontrib><title>A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested computational domains with increasing horizontal resolution down to 100 m, and a vertical resolution of 10 m at the lowest level, are used to reproduce the local-scale variations of the breeze close to the water surface of the bay. The Weather Research and Forecasting mesoscale model is used to assimilate the meteorological data. Comparisons of the simulations with the experimental data obtained at three sites reveal a good agreement of the flow over the bay and around the Quiberon peninsula during the daytime periods of sea-breeze development and weakening. In conditions of offshore synoptic flow, the simulations demonstrate that the semi-circular shape of the bay induces a corresponding circular shape in the offshore zones of stagnant flow preceding the sea-breeze onset, which move further offshore thereafter. The higher-resolution simulations are successful in reproducing the small-scale impacts of the peninsula and local coasts (breeze deviations, wakes, flow divergences), and in demonstrating the complexity of the breeze fields close to the surface over the bay. Our reanalysis also provides guidance for numerical simulation strategies for analyzing the structure and evolution of the near-surface breeze over a semi-circular bay, and for forecasting important flow details for use in upcoming sailing competitions.</description><subject>Advertising campaigns</subject><subject>Analysis</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Circularity</subject><subject>Coastal environments</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Fluid mechanics</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Meteorological data</subject><subject>Meteorological research</subject><subject>Meteorology</subject><subject>Numerical analysis</subject><subject>Numerical simulations</subject><subject>Offshore</subject><subject>Offshore oil fields</subject><subject>Physics</subject><subject>Research Article</subject><subject>Resolution</subject><subject>Sailing</subject><subject>Sciences of the Universe</subject><subject>Shape</subject><subject>Simulation</subject><subject>Wakes</subject><subject>Weather forecasting</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kV-L1DAUxYMoOI5-AN8CPglmzc2fpvVtdtCdhUGF0eeQSW9mu3SaNWmF8dObbkV8kTyEnJzf5SSHkNfAr4Bz8z4D16piHAzjEhoGT8gKtJEMlBFPyYpzXrFagnpOXuR8X44GNF-RYUO30eXR9fTaXehhOp8x0euE-AvpYZzayzv61aWRig90153uWMIc-2ns4kA_T8Xb-YIeuvPUu0cxBnpAx47LhH2cr2-H0E84eMwvybPg-oyv_uxr8v3Tx2_bHdt_ubndbvbMy7oZGYZGQ9BteZLTQvMjSgQBih-FxlooH-q2Vp7XxhhV1b4NqvUoG4MeXKO4XJO3y9w719uH1J1dutjoOrvb7O2scagMCMF_QvG-WbwPKf6YMI_2Pk5pKPEsNEbURurykWtytbhOrkfbDSGOyfmyWjx3Pg4YuqJvtOSKV1rqAsAC-BRzThj-5gBu587s0lmJYuzcmZ2jiIXJxTucMP0T5b_Qbz3AlvM</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Calmet, Isabelle</creator><creator>Mestayer, Patrice G.</creator><creator>van Eijk, Alexander M. J.</creator><creator>Herlédant, Olivier</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4777-1510</orcidid></search><sort><creationdate>20180401</creationdate><title>A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences</title><author>Calmet, Isabelle ; Mestayer, Patrice G. ; van Eijk, Alexander M. J. ; Herlédant, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-ef951f5d546a5250be3e12140b25e824cf8d84c08777468cdf4dce397ec1a9403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advertising campaigns</topic><topic>Analysis</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Circularity</topic><topic>Coastal environments</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Fluid mechanics</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Meteorological data</topic><topic>Meteorological research</topic><topic>Meteorology</topic><topic>Numerical analysis</topic><topic>Numerical simulations</topic><topic>Offshore</topic><topic>Offshore oil fields</topic><topic>Physics</topic><topic>Research Article</topic><topic>Resolution</topic><topic>Sailing</topic><topic>Sciences of the Universe</topic><topic>Shape</topic><topic>Simulation</topic><topic>Wakes</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calmet, Isabelle</creatorcontrib><creatorcontrib>Mestayer, Patrice G.</creatorcontrib><creatorcontrib>van Eijk, Alexander M. J.</creatorcontrib><creatorcontrib>Herlédant, Olivier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calmet, Isabelle</au><au>Mestayer, Patrice G.</au><au>van Eijk, Alexander M. J.</au><au>Herlédant, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>167</volume><issue>1</issue><spage>27</spage><epage>51</epage><pages>27-51</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested computational domains with increasing horizontal resolution down to 100 m, and a vertical resolution of 10 m at the lowest level, are used to reproduce the local-scale variations of the breeze close to the water surface of the bay. The Weather Research and Forecasting mesoscale model is used to assimilate the meteorological data. Comparisons of the simulations with the experimental data obtained at three sites reveal a good agreement of the flow over the bay and around the Quiberon peninsula during the daytime periods of sea-breeze development and weakening. In conditions of offshore synoptic flow, the simulations demonstrate that the semi-circular shape of the bay induces a corresponding circular shape in the offshore zones of stagnant flow preceding the sea-breeze onset, which move further offshore thereafter. The higher-resolution simulations are successful in reproducing the small-scale impacts of the peninsula and local coasts (breeze deviations, wakes, flow divergences), and in demonstrating the complexity of the breeze fields close to the surface over the bay. Our reanalysis also provides guidance for numerical simulation strategies for analyzing the structure and evolution of the near-surface breeze over a semi-circular bay, and for forecasting important flow details for use in upcoming sailing competitions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-017-0319-1</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-4777-1510</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-8314
ispartof Boundary-layer meteorology, 2018-04, Vol.167 (1), p.27-51
issn 0006-8314
1573-1472
language eng
recordid cdi_hal_primary_oai_HAL_hal_01671220v1
source Springer Nature - Complete Springer Journals
subjects Advertising campaigns
Analysis
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Circularity
Coastal environments
Computational fluid dynamics
Computer applications
Computer simulation
Data processing
Earth and Environmental Science
Earth Sciences
Evolution
Fluid mechanics
Mathematical models
Mechanics
Meteorological data
Meteorological research
Meteorology
Numerical analysis
Numerical simulations
Offshore
Offshore oil fields
Physics
Research Article
Resolution
Sailing
Sciences of the Universe
Shape
Simulation
Wakes
Weather forecasting
title A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Coastal%20Bay%20Summer%20Breeze%20Study,%20Part%202:%20High-resolution%20Numerical%20Simulation%20of%20Sea-breeze%20Local%20Influences&rft.jtitle=Boundary-layer%20meteorology&rft.au=Calmet,%20Isabelle&rft.date=2018-04-01&rft.volume=167&rft.issue=1&rft.spage=27&rft.epage=51&rft.pages=27-51&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-017-0319-1&rft_dat=%3Cgale_hal_p%3EA530406535%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1972873557&rft_id=info:pmid/&rft_galeid=A530406535&rfr_iscdi=true