A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences
We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested c...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 2018-04, Vol.167 (1), p.27-51 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 27 |
container_title | Boundary-layer meteorology |
container_volume | 167 |
creator | Calmet, Isabelle Mestayer, Patrice G. van Eijk, Alexander M. J. Herlédant, Olivier |
description | We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested computational domains with increasing horizontal resolution down to 100 m, and a vertical resolution of 10 m at the lowest level, are used to reproduce the local-scale variations of the breeze close to the water surface of the bay. The Weather Research and Forecasting mesoscale model is used to assimilate the meteorological data. Comparisons of the simulations with the experimental data obtained at three sites reveal a good agreement of the flow over the bay and around the Quiberon peninsula during the daytime periods of sea-breeze development and weakening. In conditions of offshore synoptic flow, the simulations demonstrate that the semi-circular shape of the bay induces a corresponding circular shape in the offshore zones of stagnant flow preceding the sea-breeze onset, which move further offshore thereafter. The higher-resolution simulations are successful in reproducing the small-scale impacts of the peninsula and local coasts (breeze deviations, wakes, flow divergences), and in demonstrating the complexity of the breeze fields close to the surface over the bay. Our reanalysis also provides guidance for numerical simulation strategies for analyzing the structure and evolution of the near-surface breeze over a semi-circular bay, and for forecasting important flow details for use in upcoming sailing competitions. |
doi_str_mv | 10.1007/s10546-017-0319-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01671220v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A530406535</galeid><sourcerecordid>A530406535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-ef951f5d546a5250be3e12140b25e824cf8d84c08777468cdf4dce397ec1a9403</originalsourceid><addsrcrecordid>eNp1kV-L1DAUxYMoOI5-AN8CPglmzc2fpvVtdtCdhUGF0eeQSW9mu3SaNWmF8dObbkV8kTyEnJzf5SSHkNfAr4Bz8z4D16piHAzjEhoGT8gKtJEMlBFPyYpzXrFagnpOXuR8X44GNF-RYUO30eXR9fTaXehhOp8x0euE-AvpYZzayzv61aWRig90153uWMIc-2ns4kA_T8Xb-YIeuvPUu0cxBnpAx47LhH2cr2-H0E84eMwvybPg-oyv_uxr8v3Tx2_bHdt_ubndbvbMy7oZGYZGQ9BteZLTQvMjSgQBih-FxlooH-q2Vp7XxhhV1b4NqvUoG4MeXKO4XJO3y9w719uH1J1dutjoOrvb7O2scagMCMF_QvG-WbwPKf6YMI_2Pk5pKPEsNEbURurykWtytbhOrkfbDSGOyfmyWjx3Pg4YuqJvtOSKV1rqAsAC-BRzThj-5gBu587s0lmJYuzcmZ2jiIXJxTucMP0T5b_Qbz3AlvM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1972873557</pqid></control><display><type>article</type><title>A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences</title><source>Springer Nature - Complete Springer Journals</source><creator>Calmet, Isabelle ; Mestayer, Patrice G. ; van Eijk, Alexander M. J. ; Herlédant, Olivier</creator><creatorcontrib>Calmet, Isabelle ; Mestayer, Patrice G. ; van Eijk, Alexander M. J. ; Herlédant, Olivier</creatorcontrib><description>We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested computational domains with increasing horizontal resolution down to 100 m, and a vertical resolution of 10 m at the lowest level, are used to reproduce the local-scale variations of the breeze close to the water surface of the bay. The Weather Research and Forecasting mesoscale model is used to assimilate the meteorological data. Comparisons of the simulations with the experimental data obtained at three sites reveal a good agreement of the flow over the bay and around the Quiberon peninsula during the daytime periods of sea-breeze development and weakening. In conditions of offshore synoptic flow, the simulations demonstrate that the semi-circular shape of the bay induces a corresponding circular shape in the offshore zones of stagnant flow preceding the sea-breeze onset, which move further offshore thereafter. The higher-resolution simulations are successful in reproducing the small-scale impacts of the peninsula and local coasts (breeze deviations, wakes, flow divergences), and in demonstrating the complexity of the breeze fields close to the surface over the bay. Our reanalysis also provides guidance for numerical simulation strategies for analyzing the structure and evolution of the near-surface breeze over a semi-circular bay, and for forecasting important flow details for use in upcoming sailing competitions.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-017-0319-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Advertising campaigns ; Analysis ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Circularity ; Coastal environments ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Data processing ; Earth and Environmental Science ; Earth Sciences ; Evolution ; Fluid mechanics ; Mathematical models ; Mechanics ; Meteorological data ; Meteorological research ; Meteorology ; Numerical analysis ; Numerical simulations ; Offshore ; Offshore oil fields ; Physics ; Research Article ; Resolution ; Sailing ; Sciences of the Universe ; Shape ; Simulation ; Wakes ; Weather forecasting</subject><ispartof>Boundary-layer meteorology, 2018-04, Vol.167 (1), p.27-51</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2017</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Boundary-Layer Meteorology is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-ef951f5d546a5250be3e12140b25e824cf8d84c08777468cdf4dce397ec1a9403</citedby><cites>FETCH-LOGICAL-c389t-ef951f5d546a5250be3e12140b25e824cf8d84c08777468cdf4dce397ec1a9403</cites><orcidid>0000-0002-4777-1510</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-017-0319-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-017-0319-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01671220$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Calmet, Isabelle</creatorcontrib><creatorcontrib>Mestayer, Patrice G.</creatorcontrib><creatorcontrib>van Eijk, Alexander M. J.</creatorcontrib><creatorcontrib>Herlédant, Olivier</creatorcontrib><title>A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested computational domains with increasing horizontal resolution down to 100 m, and a vertical resolution of 10 m at the lowest level, are used to reproduce the local-scale variations of the breeze close to the water surface of the bay. The Weather Research and Forecasting mesoscale model is used to assimilate the meteorological data. Comparisons of the simulations with the experimental data obtained at three sites reveal a good agreement of the flow over the bay and around the Quiberon peninsula during the daytime periods of sea-breeze development and weakening. In conditions of offshore synoptic flow, the simulations demonstrate that the semi-circular shape of the bay induces a corresponding circular shape in the offshore zones of stagnant flow preceding the sea-breeze onset, which move further offshore thereafter. The higher-resolution simulations are successful in reproducing the small-scale impacts of the peninsula and local coasts (breeze deviations, wakes, flow divergences), and in demonstrating the complexity of the breeze fields close to the surface over the bay. Our reanalysis also provides guidance for numerical simulation strategies for analyzing the structure and evolution of the near-surface breeze over a semi-circular bay, and for forecasting important flow details for use in upcoming sailing competitions.</description><subject>Advertising campaigns</subject><subject>Analysis</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Circularity</subject><subject>Coastal environments</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Evolution</subject><subject>Fluid mechanics</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Meteorological data</subject><subject>Meteorological research</subject><subject>Meteorology</subject><subject>Numerical analysis</subject><subject>Numerical simulations</subject><subject>Offshore</subject><subject>Offshore oil fields</subject><subject>Physics</subject><subject>Research Article</subject><subject>Resolution</subject><subject>Sailing</subject><subject>Sciences of the Universe</subject><subject>Shape</subject><subject>Simulation</subject><subject>Wakes</subject><subject>Weather forecasting</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kV-L1DAUxYMoOI5-AN8CPglmzc2fpvVtdtCdhUGF0eeQSW9mu3SaNWmF8dObbkV8kTyEnJzf5SSHkNfAr4Bz8z4D16piHAzjEhoGT8gKtJEMlBFPyYpzXrFagnpOXuR8X44GNF-RYUO30eXR9fTaXehhOp8x0euE-AvpYZzayzv61aWRig90153uWMIc-2ns4kA_T8Xb-YIeuvPUu0cxBnpAx47LhH2cr2-H0E84eMwvybPg-oyv_uxr8v3Tx2_bHdt_ubndbvbMy7oZGYZGQ9BteZLTQvMjSgQBih-FxlooH-q2Vp7XxhhV1b4NqvUoG4MeXKO4XJO3y9w719uH1J1dutjoOrvb7O2scagMCMF_QvG-WbwPKf6YMI_2Pk5pKPEsNEbURurykWtytbhOrkfbDSGOyfmyWjx3Pg4YuqJvtOSKV1rqAsAC-BRzThj-5gBu587s0lmJYuzcmZ2jiIXJxTucMP0T5b_Qbz3AlvM</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Calmet, Isabelle</creator><creator>Mestayer, Patrice G.</creator><creator>van Eijk, Alexander M. J.</creator><creator>Herlédant, Olivier</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4777-1510</orcidid></search><sort><creationdate>20180401</creationdate><title>A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences</title><author>Calmet, Isabelle ; Mestayer, Patrice G. ; van Eijk, Alexander M. J. ; Herlédant, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-ef951f5d546a5250be3e12140b25e824cf8d84c08777468cdf4dce397ec1a9403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advertising campaigns</topic><topic>Analysis</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Circularity</topic><topic>Coastal environments</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Evolution</topic><topic>Fluid mechanics</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Meteorological data</topic><topic>Meteorological research</topic><topic>Meteorology</topic><topic>Numerical analysis</topic><topic>Numerical simulations</topic><topic>Offshore</topic><topic>Offshore oil fields</topic><topic>Physics</topic><topic>Research Article</topic><topic>Resolution</topic><topic>Sailing</topic><topic>Sciences of the Universe</topic><topic>Shape</topic><topic>Simulation</topic><topic>Wakes</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calmet, Isabelle</creatorcontrib><creatorcontrib>Mestayer, Patrice G.</creatorcontrib><creatorcontrib>van Eijk, Alexander M. J.</creatorcontrib><creatorcontrib>Herlédant, Olivier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calmet, Isabelle</au><au>Mestayer, Patrice G.</au><au>van Eijk, Alexander M. J.</au><au>Herlédant, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>167</volume><issue>1</issue><spage>27</spage><epage>51</epage><pages>27-51</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>We complete the analysis of the data obtained during the experimental campaign around the semi circular bay of Quiberon, France, during two weeks in June 2006 (see Part 1). A reanalysis of numerical simulations performed with the Advanced Regional Prediction System model is presented. Three nested computational domains with increasing horizontal resolution down to 100 m, and a vertical resolution of 10 m at the lowest level, are used to reproduce the local-scale variations of the breeze close to the water surface of the bay. The Weather Research and Forecasting mesoscale model is used to assimilate the meteorological data. Comparisons of the simulations with the experimental data obtained at three sites reveal a good agreement of the flow over the bay and around the Quiberon peninsula during the daytime periods of sea-breeze development and weakening. In conditions of offshore synoptic flow, the simulations demonstrate that the semi-circular shape of the bay induces a corresponding circular shape in the offshore zones of stagnant flow preceding the sea-breeze onset, which move further offshore thereafter. The higher-resolution simulations are successful in reproducing the small-scale impacts of the peninsula and local coasts (breeze deviations, wakes, flow divergences), and in demonstrating the complexity of the breeze fields close to the surface over the bay. Our reanalysis also provides guidance for numerical simulation strategies for analyzing the structure and evolution of the near-surface breeze over a semi-circular bay, and for forecasting important flow details for use in upcoming sailing competitions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-017-0319-1</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-4777-1510</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2018-04, Vol.167 (1), p.27-51 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01671220v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Advertising campaigns Analysis Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Circularity Coastal environments Computational fluid dynamics Computer applications Computer simulation Data processing Earth and Environmental Science Earth Sciences Evolution Fluid mechanics Mathematical models Mechanics Meteorological data Meteorological research Meteorology Numerical analysis Numerical simulations Offshore Offshore oil fields Physics Research Article Resolution Sailing Sciences of the Universe Shape Simulation Wakes Weather forecasting |
title | A Coastal Bay Summer Breeze Study, Part 2: High-resolution Numerical Simulation of Sea-breeze Local Influences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Coastal%20Bay%20Summer%20Breeze%20Study,%20Part%202:%20High-resolution%20Numerical%20Simulation%20of%20Sea-breeze%20Local%20Influences&rft.jtitle=Boundary-layer%20meteorology&rft.au=Calmet,%20Isabelle&rft.date=2018-04-01&rft.volume=167&rft.issue=1&rft.spage=27&rft.epage=51&rft.pages=27-51&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-017-0319-1&rft_dat=%3Cgale_hal_p%3EA530406535%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1972873557&rft_id=info:pmid/&rft_galeid=A530406535&rfr_iscdi=true |