Heuristics and lower bounds for minimizing fuel consumption in hybrid-electrical vehicles

In hybrid electric vehicles, the electrical powertrain system has multiple energy sources that it can gather power from to satisfy the propulsion power requested by the vehicle at each instant. This paper focusses on the minimization of the fuel consumption of such a vehicle, taking advantage of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:4OR 2017-12, Vol.15 (4), p.407-430
Hauptverfasser: Ngueveu, Sandra Ulrich, Caux, Stéphane, Messine, Frédéric, Guemri, Mouloud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 4
container_start_page 407
container_title 4OR
container_volume 15
creator Ngueveu, Sandra Ulrich
Caux, Stéphane
Messine, Frédéric
Guemri, Mouloud
description In hybrid electric vehicles, the electrical powertrain system has multiple energy sources that it can gather power from to satisfy the propulsion power requested by the vehicle at each instant. This paper focusses on the minimization of the fuel consumption of such a vehicle, taking advantage of the different energy sources. Based on global optimization approaches, the proposed heuristics find solutions that best split the power requested between the multi-electrical sources available. A lower bounding procedure is introduced to validate the quality of the solutions. Computational results show a significant improvement over previous results from the literature in both the computing time and the quality of the solutions.
doi_str_mv 10.1007/s10288-017-0343-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01671023v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817892814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-f0c617fae4cac40b654754c85000dcaf7f06be3acebd62c4fa562c089ecda4a83</originalsourceid><addsrcrecordid>eNp9kcFOwzAMhisEEmPwANwiceIQcNqk6Y7TBAxpEhc4cIrSNNkydclI2qHx9GQUIS5wsS3r-23Lf5ZdErghAPw2EsirCgPhGApaYHaUjUhJKM4pIcdf9QRTBnCancW4BiiKgsIoe53rPtjYWRWRdA1q_bsOqPa9ayIyPqCNdXZjP6xbItPrFinvYr_ZdtY7ZB1a7etgG6xbrbpglWzRTq-sanU8z06MbKO--M7j7OX-7nk2x4unh8fZdIEVA95hA6ok3EhNlVQU6pJRzqiq0qnQKGm4gbLWhVS6bspcUSNZSlBNtGoklVUxzq6HuSvZim2wGxn2wksr5tOFOPSAlDx9p9iRxF4N7Db4t17HTqx9H1w6T-QV4dUkRfofRSYlA8aBQKLIQKngYwza_CwnIA6eiMGTtJ-LgyeCJU0-aGJi3VKHX5P_FH0CkVeO5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1965057010</pqid></control><display><type>article</type><title>Heuristics and lower bounds for minimizing fuel consumption in hybrid-electrical vehicles</title><source>Springer Nature - Complete Springer Journals</source><creator>Ngueveu, Sandra Ulrich ; Caux, Stéphane ; Messine, Frédéric ; Guemri, Mouloud</creator><creatorcontrib>Ngueveu, Sandra Ulrich ; Caux, Stéphane ; Messine, Frédéric ; Guemri, Mouloud</creatorcontrib><description>In hybrid electric vehicles, the electrical powertrain system has multiple energy sources that it can gather power from to satisfy the propulsion power requested by the vehicle at each instant. This paper focusses on the minimization of the fuel consumption of such a vehicle, taking advantage of the different energy sources. Based on global optimization approaches, the proposed heuristics find solutions that best split the power requested between the multi-electrical sources available. A lower bounding procedure is introduced to validate the quality of the solutions. Computational results show a significant improvement over previous results from the literature in both the computing time and the quality of the solutions.</description><identifier>ISSN: 1619-4500</identifier><identifier>EISSN: 1614-2411</identifier><identifier>DOI: 10.1007/s10288-017-0343-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Business and Management ; Computational Complexity ; Computer Science ; Computer Science and Game Theory ; Computing time ; Efficiency ; Electric vehicles ; Energy consumption ; Energy management ; Energy resources ; Energy sources ; Fuel cells ; Fuel consumption ; Global optimization ; Heuristic ; Hybrid electric vehicles ; Hydrogen ; Industrial and Production Engineering ; Lower bounds ; Mathematics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Optimization and Control ; Powertrain ; Research Paper ; Vehicles</subject><ispartof>4OR, 2017-12, Vol.15 (4), p.407-430</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>4OR is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Springer-Verlag Berlin Heidelberg 2017.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-f0c617fae4cac40b654754c85000dcaf7f06be3acebd62c4fa562c089ecda4a83</citedby><cites>FETCH-LOGICAL-c507t-f0c617fae4cac40b654754c85000dcaf7f06be3acebd62c4fa562c089ecda4a83</cites><orcidid>0000-0002-6457-3321 ; 0000-0002-5220-0499 ; 0009-0002-4353-2106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10288-017-0343-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10288-017-0343-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01671023$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ngueveu, Sandra Ulrich</creatorcontrib><creatorcontrib>Caux, Stéphane</creatorcontrib><creatorcontrib>Messine, Frédéric</creatorcontrib><creatorcontrib>Guemri, Mouloud</creatorcontrib><title>Heuristics and lower bounds for minimizing fuel consumption in hybrid-electrical vehicles</title><title>4OR</title><addtitle>4OR-Q J Oper Res</addtitle><description>In hybrid electric vehicles, the electrical powertrain system has multiple energy sources that it can gather power from to satisfy the propulsion power requested by the vehicle at each instant. This paper focusses on the minimization of the fuel consumption of such a vehicle, taking advantage of the different energy sources. Based on global optimization approaches, the proposed heuristics find solutions that best split the power requested between the multi-electrical sources available. A lower bounding procedure is introduced to validate the quality of the solutions. Computational results show a significant improvement over previous results from the literature in both the computing time and the quality of the solutions.</description><subject>Business and Management</subject><subject>Computational Complexity</subject><subject>Computer Science</subject><subject>Computer Science and Game Theory</subject><subject>Computing time</subject><subject>Efficiency</subject><subject>Electric vehicles</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Fuel cells</subject><subject>Fuel consumption</subject><subject>Global optimization</subject><subject>Heuristic</subject><subject>Hybrid electric vehicles</subject><subject>Hydrogen</subject><subject>Industrial and Production Engineering</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization and Control</subject><subject>Powertrain</subject><subject>Research Paper</subject><subject>Vehicles</subject><issn>1619-4500</issn><issn>1614-2411</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kcFOwzAMhisEEmPwANwiceIQcNqk6Y7TBAxpEhc4cIrSNNkydclI2qHx9GQUIS5wsS3r-23Lf5ZdErghAPw2EsirCgPhGApaYHaUjUhJKM4pIcdf9QRTBnCancW4BiiKgsIoe53rPtjYWRWRdA1q_bsOqPa9ayIyPqCNdXZjP6xbItPrFinvYr_ZdtY7ZB1a7etgG6xbrbpglWzRTq-sanU8z06MbKO--M7j7OX-7nk2x4unh8fZdIEVA95hA6ok3EhNlVQU6pJRzqiq0qnQKGm4gbLWhVS6bspcUSNZSlBNtGoklVUxzq6HuSvZim2wGxn2wksr5tOFOPSAlDx9p9iRxF4N7Db4t17HTqx9H1w6T-QV4dUkRfofRSYlA8aBQKLIQKngYwza_CwnIA6eiMGTtJ-LgyeCJU0-aGJi3VKHX5P_FH0CkVeO5g</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Ngueveu, Sandra Ulrich</creator><creator>Caux, Stéphane</creator><creator>Messine, Frédéric</creator><creator>Guemri, Mouloud</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6457-3321</orcidid><orcidid>https://orcid.org/0000-0002-5220-0499</orcidid><orcidid>https://orcid.org/0009-0002-4353-2106</orcidid></search><sort><creationdate>20171201</creationdate><title>Heuristics and lower bounds for minimizing fuel consumption in hybrid-electrical vehicles</title><author>Ngueveu, Sandra Ulrich ; Caux, Stéphane ; Messine, Frédéric ; Guemri, Mouloud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-f0c617fae4cac40b654754c85000dcaf7f06be3acebd62c4fa562c089ecda4a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Business and Management</topic><topic>Computational Complexity</topic><topic>Computer Science</topic><topic>Computer Science and Game Theory</topic><topic>Computing time</topic><topic>Efficiency</topic><topic>Electric vehicles</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Fuel cells</topic><topic>Fuel consumption</topic><topic>Global optimization</topic><topic>Heuristic</topic><topic>Hybrid electric vehicles</topic><topic>Hydrogen</topic><topic>Industrial and Production Engineering</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization and Control</topic><topic>Powertrain</topic><topic>Research Paper</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ngueveu, Sandra Ulrich</creatorcontrib><creatorcontrib>Caux, Stéphane</creatorcontrib><creatorcontrib>Messine, Frédéric</creatorcontrib><creatorcontrib>Guemri, Mouloud</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>4OR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngueveu, Sandra Ulrich</au><au>Caux, Stéphane</au><au>Messine, Frédéric</au><au>Guemri, Mouloud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heuristics and lower bounds for minimizing fuel consumption in hybrid-electrical vehicles</atitle><jtitle>4OR</jtitle><stitle>4OR-Q J Oper Res</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>15</volume><issue>4</issue><spage>407</spage><epage>430</epage><pages>407-430</pages><issn>1619-4500</issn><eissn>1614-2411</eissn><abstract>In hybrid electric vehicles, the electrical powertrain system has multiple energy sources that it can gather power from to satisfy the propulsion power requested by the vehicle at each instant. This paper focusses on the minimization of the fuel consumption of such a vehicle, taking advantage of the different energy sources. Based on global optimization approaches, the proposed heuristics find solutions that best split the power requested between the multi-electrical sources available. A lower bounding procedure is introduced to validate the quality of the solutions. Computational results show a significant improvement over previous results from the literature in both the computing time and the quality of the solutions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10288-017-0343-5</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-6457-3321</orcidid><orcidid>https://orcid.org/0000-0002-5220-0499</orcidid><orcidid>https://orcid.org/0009-0002-4353-2106</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1619-4500
ispartof 4OR, 2017-12, Vol.15 (4), p.407-430
issn 1619-4500
1614-2411
language eng
recordid cdi_hal_primary_oai_HAL_hal_01671023v1
source Springer Nature - Complete Springer Journals
subjects Business and Management
Computational Complexity
Computer Science
Computer Science and Game Theory
Computing time
Efficiency
Electric vehicles
Energy consumption
Energy management
Energy resources
Energy sources
Fuel cells
Fuel consumption
Global optimization
Heuristic
Hybrid electric vehicles
Hydrogen
Industrial and Production Engineering
Lower bounds
Mathematics
Operations Research
Operations Research/Decision Theory
Optimization
Optimization and Control
Powertrain
Research Paper
Vehicles
title Heuristics and lower bounds for minimizing fuel consumption in hybrid-electrical vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A23%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heuristics%20and%20lower%20bounds%20for%20minimizing%20fuel%20consumption%20in%20hybrid-electrical%20vehicles&rft.jtitle=4OR&rft.au=Ngueveu,%20Sandra%20Ulrich&rft.date=2017-12-01&rft.volume=15&rft.issue=4&rft.spage=407&rft.epage=430&rft.pages=407-430&rft.issn=1619-4500&rft.eissn=1614-2411&rft_id=info:doi/10.1007/s10288-017-0343-5&rft_dat=%3Cproquest_hal_p%3E2817892814%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1965057010&rft_id=info:pmid/&rfr_iscdi=true