Experimental and numerical analysis of a turbulent spray flame structure

An experimental and numerical study of an academic n-heptane/air lab-scale jet spray burner is presented. The objective is to provide new insight on turbulent spray flame complex structures similar to those encountered in industrial combustors by joint experimental and numerical diagnostics. Experim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Combustion Institute 2017-01, Vol.36 (2), p.2567-2575
Hauptverfasser: Shum-Kivan, F., Marrero Santiago, J., Verdier, A., Riber, E., Renou, B., Cabot, G., Cuenot, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2575
container_issue 2
container_start_page 2567
container_title Proceedings of the Combustion Institute
container_volume 36
creator Shum-Kivan, F.
Marrero Santiago, J.
Verdier, A.
Riber, E.
Renou, B.
Cabot, G.
Cuenot, B.
description An experimental and numerical study of an academic n-heptane/air lab-scale jet spray burner is presented. The objective is to provide new insight on turbulent spray flame complex structures similar to those encountered in industrial combustors by joint experimental and numerical diagnostics. Experimental measurements include PDA for air velocity and droplet size as well as velocity and OH-PLIF images for the flame analysis. Numerical simulations consist in Large Eddy Simulation (LES) coupled to Discrete Particle Simulation for the dispersed phase. The comparison between experiment and simulation confirms the capability of LES to reproduce the gaseous and liquid flow structure in both non-reacting and reacting cases with good accuracy. The lifted stabilized spray flame exhibits a complex shape due to interactions between turbulence, chemistry and evaporation. A detailed analysis shows that both partially-premixed and diffusion flames are present, depending on the capacity of droplets to evaporate. Furthermore, an attempt is made to identify the processes leading to two-phase flame stabilization.
doi_str_mv 10.1016/j.proci.2016.06.039
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01669502v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1540748916300979</els_id><sourcerecordid>oai_HAL_hal_01669502v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-bb12b74b0001fe4299d8905fba0bfcd70a49525172e30d2e71aaa751f5568d623</originalsourceid><addsrcrecordid>eNp9UMFOwzAMjRBIjMEXcMmVQ4uTNE1z4DBNY0OaxAXOUZomIlPXVkk7sb8n2xBHJEv2s9-z7IfQI4GcACmfd_kQeuNzmkAOKZi8QjNSCZZRAcV1qnkBmSgqeYvuYtwBMAGMz9Bm9T3Y4Pe2G3WLddfgbtqnhjkj3R6jj7h3WONxCvXUJh6OQ9BH7Fq9tziOYTJpZO_RjdNttA-_eY4-X1cfy022fV-_LRfbzBQgxqyuCa1FUQMAcbagUjaVBO5qDbUzjQBdSE45EdQyaKgVRGstOHGcl1VTUjZHT5e9X7pVQ7pch6PqtVebxVadesmCUnKgB5K47MI1oY8xWPcnIKBOxqmdOhunTsYpSMFkUr1cVDa9cfA2qGi87YxtfLBmVE3v_9X_AIWGd9c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental and numerical analysis of a turbulent spray flame structure</title><source>Elsevier ScienceDirect Journals</source><creator>Shum-Kivan, F. ; Marrero Santiago, J. ; Verdier, A. ; Riber, E. ; Renou, B. ; Cabot, G. ; Cuenot, B.</creator><creatorcontrib>Shum-Kivan, F. ; Marrero Santiago, J. ; Verdier, A. ; Riber, E. ; Renou, B. ; Cabot, G. ; Cuenot, B.</creatorcontrib><description>An experimental and numerical study of an academic n-heptane/air lab-scale jet spray burner is presented. The objective is to provide new insight on turbulent spray flame complex structures similar to those encountered in industrial combustors by joint experimental and numerical diagnostics. Experimental measurements include PDA for air velocity and droplet size as well as velocity and OH-PLIF images for the flame analysis. Numerical simulations consist in Large Eddy Simulation (LES) coupled to Discrete Particle Simulation for the dispersed phase. The comparison between experiment and simulation confirms the capability of LES to reproduce the gaseous and liquid flow structure in both non-reacting and reacting cases with good accuracy. The lifted stabilized spray flame exhibits a complex shape due to interactions between turbulence, chemistry and evaporation. A detailed analysis shows that both partially-premixed and diffusion flames are present, depending on the capacity of droplets to evaporate. Furthermore, an attempt is made to identify the processes leading to two-phase flame stabilization.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>EISSN: 1540-7489</identifier><identifier>DOI: 10.1016/j.proci.2016.06.039</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Discrete Particle Simulation ; Engineering Sciences ; Large Eddy Simulation ; OH-PLIF ; PDA ; Spray jet flame structure</subject><ispartof>Proceedings of the Combustion Institute, 2017-01, Vol.36 (2), p.2567-2575</ispartof><rights>2016 The Combustion Institute</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-bb12b74b0001fe4299d8905fba0bfcd70a49525172e30d2e71aaa751f5568d623</citedby><cites>FETCH-LOGICAL-c407t-bb12b74b0001fe4299d8905fba0bfcd70a49525172e30d2e71aaa751f5568d623</cites><orcidid>0000-0002-7061-3668 ; 0000-0001-9859-0456 ; 0000-0001-6620-985X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1540748916300979$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-01669502$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shum-Kivan, F.</creatorcontrib><creatorcontrib>Marrero Santiago, J.</creatorcontrib><creatorcontrib>Verdier, A.</creatorcontrib><creatorcontrib>Riber, E.</creatorcontrib><creatorcontrib>Renou, B.</creatorcontrib><creatorcontrib>Cabot, G.</creatorcontrib><creatorcontrib>Cuenot, B.</creatorcontrib><title>Experimental and numerical analysis of a turbulent spray flame structure</title><title>Proceedings of the Combustion Institute</title><description>An experimental and numerical study of an academic n-heptane/air lab-scale jet spray burner is presented. The objective is to provide new insight on turbulent spray flame complex structures similar to those encountered in industrial combustors by joint experimental and numerical diagnostics. Experimental measurements include PDA for air velocity and droplet size as well as velocity and OH-PLIF images for the flame analysis. Numerical simulations consist in Large Eddy Simulation (LES) coupled to Discrete Particle Simulation for the dispersed phase. The comparison between experiment and simulation confirms the capability of LES to reproduce the gaseous and liquid flow structure in both non-reacting and reacting cases with good accuracy. The lifted stabilized spray flame exhibits a complex shape due to interactions between turbulence, chemistry and evaporation. A detailed analysis shows that both partially-premixed and diffusion flames are present, depending on the capacity of droplets to evaporate. Furthermore, an attempt is made to identify the processes leading to two-phase flame stabilization.</description><subject>Discrete Particle Simulation</subject><subject>Engineering Sciences</subject><subject>Large Eddy Simulation</subject><subject>OH-PLIF</subject><subject>PDA</subject><subject>Spray jet flame structure</subject><issn>1540-7489</issn><issn>1873-2704</issn><issn>1540-7489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UMFOwzAMjRBIjMEXcMmVQ4uTNE1z4DBNY0OaxAXOUZomIlPXVkk7sb8n2xBHJEv2s9-z7IfQI4GcACmfd_kQeuNzmkAOKZi8QjNSCZZRAcV1qnkBmSgqeYvuYtwBMAGMz9Bm9T3Y4Pe2G3WLddfgbtqnhjkj3R6jj7h3WONxCvXUJh6OQ9BH7Fq9tziOYTJpZO_RjdNttA-_eY4-X1cfy022fV-_LRfbzBQgxqyuCa1FUQMAcbagUjaVBO5qDbUzjQBdSE45EdQyaKgVRGstOHGcl1VTUjZHT5e9X7pVQ7pch6PqtVebxVadesmCUnKgB5K47MI1oY8xWPcnIKBOxqmdOhunTsYpSMFkUr1cVDa9cfA2qGi87YxtfLBmVE3v_9X_AIWGd9c</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Shum-Kivan, F.</creator><creator>Marrero Santiago, J.</creator><creator>Verdier, A.</creator><creator>Riber, E.</creator><creator>Renou, B.</creator><creator>Cabot, G.</creator><creator>Cuenot, B.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7061-3668</orcidid><orcidid>https://orcid.org/0000-0001-9859-0456</orcidid><orcidid>https://orcid.org/0000-0001-6620-985X</orcidid></search><sort><creationdate>20170101</creationdate><title>Experimental and numerical analysis of a turbulent spray flame structure</title><author>Shum-Kivan, F. ; Marrero Santiago, J. ; Verdier, A. ; Riber, E. ; Renou, B. ; Cabot, G. ; Cuenot, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-bb12b74b0001fe4299d8905fba0bfcd70a49525172e30d2e71aaa751f5568d623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Discrete Particle Simulation</topic><topic>Engineering Sciences</topic><topic>Large Eddy Simulation</topic><topic>OH-PLIF</topic><topic>PDA</topic><topic>Spray jet flame structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shum-Kivan, F.</creatorcontrib><creatorcontrib>Marrero Santiago, J.</creatorcontrib><creatorcontrib>Verdier, A.</creatorcontrib><creatorcontrib>Riber, E.</creatorcontrib><creatorcontrib>Renou, B.</creatorcontrib><creatorcontrib>Cabot, G.</creatorcontrib><creatorcontrib>Cuenot, B.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shum-Kivan, F.</au><au>Marrero Santiago, J.</au><au>Verdier, A.</au><au>Riber, E.</au><au>Renou, B.</au><au>Cabot, G.</au><au>Cuenot, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical analysis of a turbulent spray flame structure</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>36</volume><issue>2</issue><spage>2567</spage><epage>2575</epage><pages>2567-2575</pages><issn>1540-7489</issn><eissn>1873-2704</eissn><eissn>1540-7489</eissn><abstract>An experimental and numerical study of an academic n-heptane/air lab-scale jet spray burner is presented. The objective is to provide new insight on turbulent spray flame complex structures similar to those encountered in industrial combustors by joint experimental and numerical diagnostics. Experimental measurements include PDA for air velocity and droplet size as well as velocity and OH-PLIF images for the flame analysis. Numerical simulations consist in Large Eddy Simulation (LES) coupled to Discrete Particle Simulation for the dispersed phase. The comparison between experiment and simulation confirms the capability of LES to reproduce the gaseous and liquid flow structure in both non-reacting and reacting cases with good accuracy. The lifted stabilized spray flame exhibits a complex shape due to interactions between turbulence, chemistry and evaporation. A detailed analysis shows that both partially-premixed and diffusion flames are present, depending on the capacity of droplets to evaporate. Furthermore, an attempt is made to identify the processes leading to two-phase flame stabilization.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2016.06.039</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7061-3668</orcidid><orcidid>https://orcid.org/0000-0001-9859-0456</orcidid><orcidid>https://orcid.org/0000-0001-6620-985X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1540-7489
ispartof Proceedings of the Combustion Institute, 2017-01, Vol.36 (2), p.2567-2575
issn 1540-7489
1873-2704
1540-7489
language eng
recordid cdi_hal_primary_oai_HAL_hal_01669502v1
source Elsevier ScienceDirect Journals
subjects Discrete Particle Simulation
Engineering Sciences
Large Eddy Simulation
OH-PLIF
PDA
Spray jet flame structure
title Experimental and numerical analysis of a turbulent spray flame structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20analysis%20of%20a%20turbulent%20spray%20flame%20structure&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=Shum-Kivan,%20F.&rft.date=2017-01-01&rft.volume=36&rft.issue=2&rft.spage=2567&rft.epage=2575&rft.pages=2567-2575&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2016.06.039&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01669502v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1540748916300979&rfr_iscdi=true