Internal stresses and carbon enrichment in austenite of Quenching and Partitioning steels from high energy X-ray diffraction experiments
Quenching and Partitioning (Q&P) process permits to produce innovative microstructures containing large fraction of carbon enriched retained austenite. The present study highlights that austenite undergoes significant internal stresses generated during such thermal cycle. Both mechanical and che...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-01, Vol.710, p.245-250 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | |
container_start_page | 245 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 710 |
creator | Allain, Sébastien Yves Pierre Gaudez, Steve Geandier, Guillaume Hell, Jean-Christophe Gouné, Mohamed Danoix, Frédéric Soler, Michel Aoued, Samy Poulon-Quintin, Angeline |
description | Quenching and Partitioning (Q&P) process permits to produce innovative microstructures containing large fraction of carbon enriched retained austenite. The present study highlights that austenite undergoes significant internal stresses generated during such thermal cycle. Both mechanical and chemical contributions are likely to affect its stability at room temperature and thus the resulting mechanical properties of the steel. The experiments carried out by High Energy X-Ray Diffraction (HEXRD) show unambiguously that internal stresses in austenite originate from martensitic transformation strain and from additional hydrostatic stresses induced during both reheating to partitioning temperature and final cooling. These eigenstrains are attributed to the difference in Coefficients of Thermal Expansion (CTE) between martensite and austenite and are predicted successfully with a purely elastic mean field approach. In the present study, retained austenite is shown to be in compression at room temperature. As a consequence, this state of stress contributes to stabilize retained austenite against a possible strain induced transformation at room temperature and affects the way to determine the carbon content in austenite.
[Display omitted] |
doi_str_mv | 10.1016/j.msea.2017.10.105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01667935v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509317314314</els_id><sourcerecordid>2003018428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-2b6e87c8e906ae73c1f6205ff6de6752fdf012f0053e50dbcc0c7734706287603</originalsourceid><addsrcrecordid>eNp9kUGLFDEUhBtRcFz9A54Cnjz07EvSSbrBy7KouzCggoK3kEm_TGeYScYkszj_wJ9tenvx6OlB8VU9qGqatxTWFKi83q-PGc2aAVXrR008a1a0V7ztBi6fNysYGG0FDPxl8yrnPQDQDsSq-XMfCqZgDiSXhDljJiaMxJq0jYFgSN5ORwyF-EDMORcMviCJjnw7Y7CTD7tH_qtJxRcfwyxUCg-ZuBSPZPK7qcZg2l3IzzaZCxm9c8nYGSb4-4TJz_n5dfPCmUPGN0_3qvnx6eP327t28-Xz_e3NprWdYqVlW4m9sj0OIA0qbqmTDIRzckSpBHOjA8ocgOAoYNxaC1Yp3imQrFcS-FXzfsmdzEGf6nOTLjoar-9uNnrWap1SDVw80Mq-W9hTir_OmIvex_NcVtYMgAPtO9ZXii2UTTHnhO5fLAU9r6P3el5Hz-ssmqimD4upNoUPHpPO1tdGcfQJbdFj9P-z_wWIwpnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003018428</pqid></control><display><type>article</type><title>Internal stresses and carbon enrichment in austenite of Quenching and Partitioning steels from high energy X-ray diffraction experiments</title><source>Elsevier ScienceDirect Journals</source><creator>Allain, Sébastien Yves Pierre ; Gaudez, Steve ; Geandier, Guillaume ; Hell, Jean-Christophe ; Gouné, Mohamed ; Danoix, Frédéric ; Soler, Michel ; Aoued, Samy ; Poulon-Quintin, Angeline</creator><creatorcontrib>Allain, Sébastien Yves Pierre ; Gaudez, Steve ; Geandier, Guillaume ; Hell, Jean-Christophe ; Gouné, Mohamed ; Danoix, Frédéric ; Soler, Michel ; Aoued, Samy ; Poulon-Quintin, Angeline</creatorcontrib><description>Quenching and Partitioning (Q&P) process permits to produce innovative microstructures containing large fraction of carbon enriched retained austenite. The present study highlights that austenite undergoes significant internal stresses generated during such thermal cycle. Both mechanical and chemical contributions are likely to affect its stability at room temperature and thus the resulting mechanical properties of the steel. The experiments carried out by High Energy X-Ray Diffraction (HEXRD) show unambiguously that internal stresses in austenite originate from martensitic transformation strain and from additional hydrostatic stresses induced during both reheating to partitioning temperature and final cooling. These eigenstrains are attributed to the difference in Coefficients of Thermal Expansion (CTE) between martensite and austenite and are predicted successfully with a purely elastic mean field approach. In the present study, retained austenite is shown to be in compression at room temperature. As a consequence, this state of stress contributes to stabilize retained austenite against a possible strain induced transformation at room temperature and affects the way to determine the carbon content in austenite.
[Display omitted]</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2017.10.105</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Austenite ; Carbon content ; Chemical Sciences ; Heating ; Internal stresses ; Martensite ; Martensitic stainless steels ; Martensitic transformations ; Material chemistry ; Mechanical properties ; Microstructure ; Partitioning ; Q&P ; Quenching ; Residual stress ; Retained austenite ; Steel ; Steels ; Strain ; Synchrotron ; Thermal expansion ; X-ray diffraction</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-01, Vol.710, p.245-250</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 5, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-2b6e87c8e906ae73c1f6205ff6de6752fdf012f0053e50dbcc0c7734706287603</citedby><cites>FETCH-LOGICAL-c472t-2b6e87c8e906ae73c1f6205ff6de6752fdf012f0053e50dbcc0c7734706287603</cites><orcidid>0000-0003-0511-9038 ; 0000-0002-9459-1758 ; 0000-0003-1321-7308 ; 0000-0002-5030-3523 ; 0000-0001-6658-9231</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509317314314$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01667935$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Allain, Sébastien Yves Pierre</creatorcontrib><creatorcontrib>Gaudez, Steve</creatorcontrib><creatorcontrib>Geandier, Guillaume</creatorcontrib><creatorcontrib>Hell, Jean-Christophe</creatorcontrib><creatorcontrib>Gouné, Mohamed</creatorcontrib><creatorcontrib>Danoix, Frédéric</creatorcontrib><creatorcontrib>Soler, Michel</creatorcontrib><creatorcontrib>Aoued, Samy</creatorcontrib><creatorcontrib>Poulon-Quintin, Angeline</creatorcontrib><title>Internal stresses and carbon enrichment in austenite of Quenching and Partitioning steels from high energy X-ray diffraction experiments</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Quenching and Partitioning (Q&P) process permits to produce innovative microstructures containing large fraction of carbon enriched retained austenite. The present study highlights that austenite undergoes significant internal stresses generated during such thermal cycle. Both mechanical and chemical contributions are likely to affect its stability at room temperature and thus the resulting mechanical properties of the steel. The experiments carried out by High Energy X-Ray Diffraction (HEXRD) show unambiguously that internal stresses in austenite originate from martensitic transformation strain and from additional hydrostatic stresses induced during both reheating to partitioning temperature and final cooling. These eigenstrains are attributed to the difference in Coefficients of Thermal Expansion (CTE) between martensite and austenite and are predicted successfully with a purely elastic mean field approach. In the present study, retained austenite is shown to be in compression at room temperature. As a consequence, this state of stress contributes to stabilize retained austenite against a possible strain induced transformation at room temperature and affects the way to determine the carbon content in austenite.
[Display omitted]</description><subject>Austenite</subject><subject>Carbon content</subject><subject>Chemical Sciences</subject><subject>Heating</subject><subject>Internal stresses</subject><subject>Martensite</subject><subject>Martensitic stainless steels</subject><subject>Martensitic transformations</subject><subject>Material chemistry</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Partitioning</subject><subject>Q&P</subject><subject>Quenching</subject><subject>Residual stress</subject><subject>Retained austenite</subject><subject>Steel</subject><subject>Steels</subject><subject>Strain</subject><subject>Synchrotron</subject><subject>Thermal expansion</subject><subject>X-ray diffraction</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUGLFDEUhBtRcFz9A54Cnjz07EvSSbrBy7KouzCggoK3kEm_TGeYScYkszj_wJ9tenvx6OlB8VU9qGqatxTWFKi83q-PGc2aAVXrR008a1a0V7ztBi6fNysYGG0FDPxl8yrnPQDQDsSq-XMfCqZgDiSXhDljJiaMxJq0jYFgSN5ORwyF-EDMORcMviCJjnw7Y7CTD7tH_qtJxRcfwyxUCg-ZuBSPZPK7qcZg2l3IzzaZCxm9c8nYGSb4-4TJz_n5dfPCmUPGN0_3qvnx6eP327t28-Xz_e3NprWdYqVlW4m9sj0OIA0qbqmTDIRzckSpBHOjA8ocgOAoYNxaC1Yp3imQrFcS-FXzfsmdzEGf6nOTLjoar-9uNnrWap1SDVw80Mq-W9hTir_OmIvex_NcVtYMgAPtO9ZXii2UTTHnhO5fLAU9r6P3el5Hz-ssmqimD4upNoUPHpPO1tdGcfQJbdFj9P-z_wWIwpnw</recordid><startdate>20180105</startdate><enddate>20180105</enddate><creator>Allain, Sébastien Yves Pierre</creator><creator>Gaudez, Steve</creator><creator>Geandier, Guillaume</creator><creator>Hell, Jean-Christophe</creator><creator>Gouné, Mohamed</creator><creator>Danoix, Frédéric</creator><creator>Soler, Michel</creator><creator>Aoued, Samy</creator><creator>Poulon-Quintin, Angeline</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0511-9038</orcidid><orcidid>https://orcid.org/0000-0002-9459-1758</orcidid><orcidid>https://orcid.org/0000-0003-1321-7308</orcidid><orcidid>https://orcid.org/0000-0002-5030-3523</orcidid><orcidid>https://orcid.org/0000-0001-6658-9231</orcidid></search><sort><creationdate>20180105</creationdate><title>Internal stresses and carbon enrichment in austenite of Quenching and Partitioning steels from high energy X-ray diffraction experiments</title><author>Allain, Sébastien Yves Pierre ; Gaudez, Steve ; Geandier, Guillaume ; Hell, Jean-Christophe ; Gouné, Mohamed ; Danoix, Frédéric ; Soler, Michel ; Aoued, Samy ; Poulon-Quintin, Angeline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-2b6e87c8e906ae73c1f6205ff6de6752fdf012f0053e50dbcc0c7734706287603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Austenite</topic><topic>Carbon content</topic><topic>Chemical Sciences</topic><topic>Heating</topic><topic>Internal stresses</topic><topic>Martensite</topic><topic>Martensitic stainless steels</topic><topic>Martensitic transformations</topic><topic>Material chemistry</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Partitioning</topic><topic>Q&P</topic><topic>Quenching</topic><topic>Residual stress</topic><topic>Retained austenite</topic><topic>Steel</topic><topic>Steels</topic><topic>Strain</topic><topic>Synchrotron</topic><topic>Thermal expansion</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allain, Sébastien Yves Pierre</creatorcontrib><creatorcontrib>Gaudez, Steve</creatorcontrib><creatorcontrib>Geandier, Guillaume</creatorcontrib><creatorcontrib>Hell, Jean-Christophe</creatorcontrib><creatorcontrib>Gouné, Mohamed</creatorcontrib><creatorcontrib>Danoix, Frédéric</creatorcontrib><creatorcontrib>Soler, Michel</creatorcontrib><creatorcontrib>Aoued, Samy</creatorcontrib><creatorcontrib>Poulon-Quintin, Angeline</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allain, Sébastien Yves Pierre</au><au>Gaudez, Steve</au><au>Geandier, Guillaume</au><au>Hell, Jean-Christophe</au><au>Gouné, Mohamed</au><au>Danoix, Frédéric</au><au>Soler, Michel</au><au>Aoued, Samy</au><au>Poulon-Quintin, Angeline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal stresses and carbon enrichment in austenite of Quenching and Partitioning steels from high energy X-ray diffraction experiments</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-01-05</date><risdate>2018</risdate><volume>710</volume><spage>245</spage><epage>250</epage><pages>245-250</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Quenching and Partitioning (Q&P) process permits to produce innovative microstructures containing large fraction of carbon enriched retained austenite. The present study highlights that austenite undergoes significant internal stresses generated during such thermal cycle. Both mechanical and chemical contributions are likely to affect its stability at room temperature and thus the resulting mechanical properties of the steel. The experiments carried out by High Energy X-Ray Diffraction (HEXRD) show unambiguously that internal stresses in austenite originate from martensitic transformation strain and from additional hydrostatic stresses induced during both reheating to partitioning temperature and final cooling. These eigenstrains are attributed to the difference in Coefficients of Thermal Expansion (CTE) between martensite and austenite and are predicted successfully with a purely elastic mean field approach. In the present study, retained austenite is shown to be in compression at room temperature. As a consequence, this state of stress contributes to stabilize retained austenite against a possible strain induced transformation at room temperature and affects the way to determine the carbon content in austenite.
[Display omitted]</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2017.10.105</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0511-9038</orcidid><orcidid>https://orcid.org/0000-0002-9459-1758</orcidid><orcidid>https://orcid.org/0000-0003-1321-7308</orcidid><orcidid>https://orcid.org/0000-0002-5030-3523</orcidid><orcidid>https://orcid.org/0000-0001-6658-9231</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-01, Vol.710, p.245-250 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01667935v1 |
source | Elsevier ScienceDirect Journals |
subjects | Austenite Carbon content Chemical Sciences Heating Internal stresses Martensite Martensitic stainless steels Martensitic transformations Material chemistry Mechanical properties Microstructure Partitioning Q&P Quenching Residual stress Retained austenite Steel Steels Strain Synchrotron Thermal expansion X-ray diffraction |
title | Internal stresses and carbon enrichment in austenite of Quenching and Partitioning steels from high energy X-ray diffraction experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20stresses%20and%20carbon%20enrichment%20in%20austenite%20of%20Quenching%20and%20Partitioning%20steels%20from%20high%20energy%20X-ray%20diffraction%20experiments&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Allain,%20S%C3%A9bastien%20Yves%20Pierre&rft.date=2018-01-05&rft.volume=710&rft.spage=245&rft.epage=250&rft.pages=245-250&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2017.10.105&rft_dat=%3Cproquest_hal_p%3E2003018428%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2003018428&rft_id=info:pmid/&rft_els_id=S0921509317314314&rfr_iscdi=true |