A robust cost function for stereo matching of road scenes

•We compare different cost functions for stereo matching of road scenes.•We propose a new non-parametric cost function: DIFFCensus.•The lowest error rate is given by the proposed function. In this paper different matching cost functions used for stereo matching are evaluated in the context of intell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 2014-03, Vol.38, p.70-77
Hauptverfasser: Miron, Alina, Ainouz, Samia, Rogozan, Alexandrina, Bensrhair, Abdelaziz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue
container_start_page 70
container_title Pattern recognition letters
container_volume 38
creator Miron, Alina
Ainouz, Samia
Rogozan, Alexandrina
Bensrhair, Abdelaziz
description •We compare different cost functions for stereo matching of road scenes.•We propose a new non-parametric cost function: DIFFCensus.•The lowest error rate is given by the proposed function. In this paper different matching cost functions used for stereo matching are evaluated in the context of intelligent vehicles applications. Classical costs are considered, like: sum of squared differences, normalised cross correlation or Census Transform that were already evaluated in previous studies, together with some recent functions that try to enhance the discriminative power of Census Transform (CT). These are evaluated with two different stereo matching algorithms: a global method based on graph cuts and a fast local one based on cross aggregation regions. Furthermore we propose a new cost function that combines the CT and alternatively a variant of CT called Cross-Comparison Census (CCC), with the mean sum of relative pixel intensity differences (DIFFCensus). Among all the tested cost functions, under the same constraints, the proposed DIFFCensus produces the lower error rate on the KITTI road scenes dataset1http://www.cvlibs.net/datasets/kitti1 with both global and local stereo matching algorithms.
doi_str_mv 10.1016/j.patrec.2013.11.009
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01667861v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167865513004509</els_id><sourcerecordid>S0167865513004509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-67c3c051f7dda092237259e1d7e0a03e09aef874c9f33f2a29c52b571eee9dcd3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKtv4GGvHnbNJLubzUUoRa2w4EXPIU0mNqXdlGRb8O1NWfHoZQaG7_9hPkLugVZAoX3cVgc9RjQVo8ArgIpSeUFm0AlWCl7Xl2SWMVF2bdNck5uUtpTSlstuRuSiiGF9TGNhQh7uOJjRh6FwIRZpxIih2OvRbPzwVQSXWW2LZHDAdEuunN4lvPvdc_L58vyxXJX9--vbctGXhnftWLbCcEMbcMJaTSVjXLBGIliBVFOOVGp0naiNdJw7ppk0DVs3AhBRWmP5nDxMvRu9U4fo9zp-q6C9Wi16db7l11rRtXCCzNYTa2JIKaL7CwBVZ1VqqyZV6qxKAaisKseephjmP04eo0rG42DQ-oyOygb_f8EPbyNzMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A robust cost function for stereo matching of road scenes</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Miron, Alina ; Ainouz, Samia ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</creator><creatorcontrib>Miron, Alina ; Ainouz, Samia ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</creatorcontrib><description>•We compare different cost functions for stereo matching of road scenes.•We propose a new non-parametric cost function: DIFFCensus.•The lowest error rate is given by the proposed function. In this paper different matching cost functions used for stereo matching are evaluated in the context of intelligent vehicles applications. Classical costs are considered, like: sum of squared differences, normalised cross correlation or Census Transform that were already evaluated in previous studies, together with some recent functions that try to enhance the discriminative power of Census Transform (CT). These are evaluated with two different stereo matching algorithms: a global method based on graph cuts and a fast local one based on cross aggregation regions. Furthermore we propose a new cost function that combines the CT and alternatively a variant of CT called Cross-Comparison Census (CCC), with the mean sum of relative pixel intensity differences (DIFFCensus). Among all the tested cost functions, under the same constraints, the proposed DIFFCensus produces the lower error rate on the KITTI road scenes dataset1http://www.cvlibs.net/datasets/kitti1 with both global and local stereo matching algorithms.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2013.11.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Census Transform ; Computer Science ; Computer Vision and Pattern Recognition ; Cross Comparison Census ; Graph cuts ; Matching cost comparison ; Stereo vision</subject><ispartof>Pattern recognition letters, 2014-03, Vol.38, p.70-77</ispartof><rights>2013 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-67c3c051f7dda092237259e1d7e0a03e09aef874c9f33f2a29c52b571eee9dcd3</citedby><cites>FETCH-LOGICAL-c386t-67c3c051f7dda092237259e1d7e0a03e09aef874c9f33f2a29c52b571eee9dcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patrec.2013.11.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01667861$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Miron, Alina</creatorcontrib><creatorcontrib>Ainouz, Samia</creatorcontrib><creatorcontrib>Rogozan, Alexandrina</creatorcontrib><creatorcontrib>Bensrhair, Abdelaziz</creatorcontrib><title>A robust cost function for stereo matching of road scenes</title><title>Pattern recognition letters</title><description>•We compare different cost functions for stereo matching of road scenes.•We propose a new non-parametric cost function: DIFFCensus.•The lowest error rate is given by the proposed function. In this paper different matching cost functions used for stereo matching are evaluated in the context of intelligent vehicles applications. Classical costs are considered, like: sum of squared differences, normalised cross correlation or Census Transform that were already evaluated in previous studies, together with some recent functions that try to enhance the discriminative power of Census Transform (CT). These are evaluated with two different stereo matching algorithms: a global method based on graph cuts and a fast local one based on cross aggregation regions. Furthermore we propose a new cost function that combines the CT and alternatively a variant of CT called Cross-Comparison Census (CCC), with the mean sum of relative pixel intensity differences (DIFFCensus). Among all the tested cost functions, under the same constraints, the proposed DIFFCensus produces the lower error rate on the KITTI road scenes dataset1http://www.cvlibs.net/datasets/kitti1 with both global and local stereo matching algorithms.</description><subject>Census Transform</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Cross Comparison Census</subject><subject>Graph cuts</subject><subject>Matching cost comparison</subject><subject>Stereo vision</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKtv4GGvHnbNJLubzUUoRa2w4EXPIU0mNqXdlGRb8O1NWfHoZQaG7_9hPkLugVZAoX3cVgc9RjQVo8ArgIpSeUFm0AlWCl7Xl2SWMVF2bdNck5uUtpTSlstuRuSiiGF9TGNhQh7uOJjRh6FwIRZpxIih2OvRbPzwVQSXWW2LZHDAdEuunN4lvPvdc_L58vyxXJX9--vbctGXhnftWLbCcEMbcMJaTSVjXLBGIliBVFOOVGp0naiNdJw7ppk0DVs3AhBRWmP5nDxMvRu9U4fo9zp-q6C9Wi16db7l11rRtXCCzNYTa2JIKaL7CwBVZ1VqqyZV6qxKAaisKseephjmP04eo0rG42DQ-oyOygb_f8EPbyNzMQ</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Miron, Alina</creator><creator>Ainouz, Samia</creator><creator>Rogozan, Alexandrina</creator><creator>Bensrhair, Abdelaziz</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20140301</creationdate><title>A robust cost function for stereo matching of road scenes</title><author>Miron, Alina ; Ainouz, Samia ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-67c3c051f7dda092237259e1d7e0a03e09aef874c9f33f2a29c52b571eee9dcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Census Transform</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Cross Comparison Census</topic><topic>Graph cuts</topic><topic>Matching cost comparison</topic><topic>Stereo vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miron, Alina</creatorcontrib><creatorcontrib>Ainouz, Samia</creatorcontrib><creatorcontrib>Rogozan, Alexandrina</creatorcontrib><creatorcontrib>Bensrhair, Abdelaziz</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miron, Alina</au><au>Ainouz, Samia</au><au>Rogozan, Alexandrina</au><au>Bensrhair, Abdelaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust cost function for stereo matching of road scenes</atitle><jtitle>Pattern recognition letters</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>38</volume><spage>70</spage><epage>77</epage><pages>70-77</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•We compare different cost functions for stereo matching of road scenes.•We propose a new non-parametric cost function: DIFFCensus.•The lowest error rate is given by the proposed function. In this paper different matching cost functions used for stereo matching are evaluated in the context of intelligent vehicles applications. Classical costs are considered, like: sum of squared differences, normalised cross correlation or Census Transform that were already evaluated in previous studies, together with some recent functions that try to enhance the discriminative power of Census Transform (CT). These are evaluated with two different stereo matching algorithms: a global method based on graph cuts and a fast local one based on cross aggregation regions. Furthermore we propose a new cost function that combines the CT and alternatively a variant of CT called Cross-Comparison Census (CCC), with the mean sum of relative pixel intensity differences (DIFFCensus). Among all the tested cost functions, under the same constraints, the proposed DIFFCensus produces the lower error rate on the KITTI road scenes dataset1http://www.cvlibs.net/datasets/kitti1 with both global and local stereo matching algorithms.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2013.11.009</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2014-03, Vol.38, p.70-77
issn 0167-8655
1872-7344
language eng
recordid cdi_hal_primary_oai_HAL_hal_01667861v1
source ScienceDirect Journals (5 years ago - present)
subjects Census Transform
Computer Science
Computer Vision and Pattern Recognition
Cross Comparison Census
Graph cuts
Matching cost comparison
Stereo vision
title A robust cost function for stereo matching of road scenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20cost%20function%20for%20stereo%20matching%20of%20road%20scenes&rft.jtitle=Pattern%20recognition%20letters&rft.au=Miron,%20Alina&rft.date=2014-03-01&rft.volume=38&rft.spage=70&rft.epage=77&rft.pages=70-77&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2013.11.009&rft_dat=%3Celsevier_hal_p%3ES0167865513004509%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167865513004509&rfr_iscdi=true