A coloring algorithm for 4K1-free line graphs

Given a family F of graphs, let Free (F) be the class of graphs that do not contain any member of F as an induced subgraph. When F is a set of four-vertex graphs the complexity of the vertex coloring problem in Free (F) is known, with three exceptions: F={claw,4K1}, F={claw,4K1,co-diamond}, and F={C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2018-01, Vol.234, p.76-85
Hauptverfasser: Fraser, Dallas J., Hamel, Angèle M., Hoàng, Chính T., Maffray, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 76
container_title Discrete Applied Mathematics
container_volume 234
creator Fraser, Dallas J.
Hamel, Angèle M.
Hoàng, Chính T.
Maffray, Frédéric
description Given a family F of graphs, let Free (F) be the class of graphs that do not contain any member of F as an induced subgraph. When F is a set of four-vertex graphs the complexity of the vertex coloring problem in Free (F) is known, with three exceptions: F={claw,4K1}, F={claw,4K1,co-diamond}, and F={C4,4K1}. In this paper, we study the coloring problem for Free (claw, 4K1). We solve the vertex coloring problem for a subclass of Free (claw, 4K1) which contains the class of 4K1-free line graphs.
doi_str_mv 10.1016/j.dam.2017.06.006
format Article
fullrecord <record><control><sourceid>hal_elsev</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01664888v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X17302925</els_id><sourcerecordid>oai_HAL_hal_01664888v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-e156t-f9b56cff8306e66c7af3e453df69c5d6b62aaeefcdacf058ffcef1e1f13f96e3</originalsourceid><addsrcrecordid>eNotkMFqwzAMhs3YYF23B9gt1x2cWUmjuOxUytaOFXbpYTfhOlLrkjbFKYW9_Ry6k6SfDyF9Sj2DycEAvu7zxh3ywkCdG8yNwRs1AlsXGusabtUoMagLsD_36qHv98YYSNNI6Vnmu7aL4bjNXLtNzXl3yKSL2eQLtETmrA1HzrbRnXb9o7oT1_b89F_Hav3xvp4v9ep78TmfrTRDhWct002FXsSWBhnR105KnlRlIzj1VYMbLJxjFt84L6ayIp4FGARKmSKXY_VyXbtzLZ1iOLj4S50LtJytaMiGbybW2gsk9u3KcrrnEjhS7wMfPTchsj9T0wUCQ4Mk2lOSRIMkMkhJUvkHpMRbng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A coloring algorithm for 4K1-free line graphs</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fraser, Dallas J. ; Hamel, Angèle M. ; Hoàng, Chính T. ; Maffray, Frédéric</creator><creatorcontrib>Fraser, Dallas J. ; Hamel, Angèle M. ; Hoàng, Chính T. ; Maffray, Frédéric</creatorcontrib><description>Given a family F of graphs, let Free (F) be the class of graphs that do not contain any member of F as an induced subgraph. When F is a set of four-vertex graphs the complexity of the vertex coloring problem in Free (F) is known, with three exceptions: F={claw,4K1}, F={claw,4K1,co-diamond}, and F={C4,4K1}. In this paper, we study the coloring problem for Free (claw, 4K1). We solve the vertex coloring problem for a subclass of Free (claw, 4K1) which contains the class of 4K1-free line graphs.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2017.06.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Claw ; Computer Science ; Discrete Mathematics ; formula omitted ; Graph coloring ; Line-graph</subject><ispartof>Discrete Applied Mathematics, 2018-01, Vol.234, p.76-85</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X17302925$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01664888$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fraser, Dallas J.</creatorcontrib><creatorcontrib>Hamel, Angèle M.</creatorcontrib><creatorcontrib>Hoàng, Chính T.</creatorcontrib><creatorcontrib>Maffray, Frédéric</creatorcontrib><title>A coloring algorithm for 4K1-free line graphs</title><title>Discrete Applied Mathematics</title><description>Given a family F of graphs, let Free (F) be the class of graphs that do not contain any member of F as an induced subgraph. When F is a set of four-vertex graphs the complexity of the vertex coloring problem in Free (F) is known, with three exceptions: F={claw,4K1}, F={claw,4K1,co-diamond}, and F={C4,4K1}. In this paper, we study the coloring problem for Free (claw, 4K1). We solve the vertex coloring problem for a subclass of Free (claw, 4K1) which contains the class of 4K1-free line graphs.</description><subject>Claw</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>formula omitted</subject><subject>Graph coloring</subject><subject>Line-graph</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkMFqwzAMhs3YYF23B9gt1x2cWUmjuOxUytaOFXbpYTfhOlLrkjbFKYW9_Ry6k6SfDyF9Sj2DycEAvu7zxh3ywkCdG8yNwRs1AlsXGusabtUoMagLsD_36qHv98YYSNNI6Vnmu7aL4bjNXLtNzXl3yKSL2eQLtETmrA1HzrbRnXb9o7oT1_b89F_Hav3xvp4v9ep78TmfrTRDhWct002FXsSWBhnR105KnlRlIzj1VYMbLJxjFt84L6ayIp4FGARKmSKXY_VyXbtzLZ1iOLj4S50LtJytaMiGbybW2gsk9u3KcrrnEjhS7wMfPTchsj9T0wUCQ4Mk2lOSRIMkMkhJUvkHpMRbng</recordid><startdate>20180110</startdate><enddate>20180110</enddate><creator>Fraser, Dallas J.</creator><creator>Hamel, Angèle M.</creator><creator>Hoàng, Chính T.</creator><creator>Maffray, Frédéric</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>1XC</scope></search><sort><creationdate>20180110</creationdate><title>A coloring algorithm for 4K1-free line graphs</title><author>Fraser, Dallas J. ; Hamel, Angèle M. ; Hoàng, Chính T. ; Maffray, Frédéric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e156t-f9b56cff8306e66c7af3e453df69c5d6b62aaeefcdacf058ffcef1e1f13f96e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Claw</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>formula omitted</topic><topic>Graph coloring</topic><topic>Line-graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraser, Dallas J.</creatorcontrib><creatorcontrib>Hamel, Angèle M.</creatorcontrib><creatorcontrib>Hoàng, Chính T.</creatorcontrib><creatorcontrib>Maffray, Frédéric</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraser, Dallas J.</au><au>Hamel, Angèle M.</au><au>Hoàng, Chính T.</au><au>Maffray, Frédéric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A coloring algorithm for 4K1-free line graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2018-01-10</date><risdate>2018</risdate><volume>234</volume><spage>76</spage><epage>85</epage><pages>76-85</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>Given a family F of graphs, let Free (F) be the class of graphs that do not contain any member of F as an induced subgraph. When F is a set of four-vertex graphs the complexity of the vertex coloring problem in Free (F) is known, with three exceptions: F={claw,4K1}, F={claw,4K1,co-diamond}, and F={C4,4K1}. In this paper, we study the coloring problem for Free (claw, 4K1). We solve the vertex coloring problem for a subclass of Free (claw, 4K1) which contains the class of 4K1-free line graphs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2017.06.006</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2018-01, Vol.234, p.76-85
issn 0166-218X
1872-6771
language eng
recordid cdi_hal_primary_oai_HAL_hal_01664888v1
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Claw
Computer Science
Discrete Mathematics
formula omitted
Graph coloring
Line-graph
title A coloring algorithm for 4K1-free line graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20coloring%20algorithm%20for%204K1-free%20line%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Fraser,%20Dallas%20J.&rft.date=2018-01-10&rft.volume=234&rft.spage=76&rft.epage=85&rft.pages=76-85&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2017.06.006&rft_dat=%3Chal_elsev%3Eoai_HAL_hal_01664888v1%3C/hal_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166218X17302925&rfr_iscdi=true