A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM

Many of the formulations of current research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2010-08, Vol.83 (6), p.765-785
Hauptverfasser: Benson, D. J., Bazilevs, Y., De Luycker, E., Hsu, M.-C., Scott, M., Hughes, T. J. R., Belytschko, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 785
container_issue 6
container_start_page 765
container_title International journal for numerical methods in engineering
container_volume 83
creator Benson, D. J.
Bazilevs, Y.
De Luycker, E.
Hsu, M.-C.
Scott, M.
Hughes, T. J. R.
Belytschko, T.
description Many of the formulations of current research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non‐linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from the analysis, resulting in a formulation that can be implemented within the traditional structure of a finite element program but that permits the use of arbitrary sets of basis functions that are defined only through the input file. Elements ranging from a traditional linear four‐node tetrahedron through a higher‐order element combining XFEM and isogeometric analysis may be specified entirely through an input file without any additional programming. Examples of this framework to applications with Lagrange elements, isogeometric elements, and XFEM basis functions for fracture are presented. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.2864
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01657907v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>896177944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4994-f4549215a7340a13c5258f9002e2c7f195556b282dfb2fa75a1e699908acf61c3</originalsourceid><addsrcrecordid>eNp10MFuEzEQBmALgUQoSDyCLwg4bLG99nrNLSpJWykph4LozZq44-LiXbf2BghP310lyo2TLc-nX56fkLecnXLGxKe-w1PRNvIZmXFmdMUE08_JbByZSpmWvySvSrlnjHPF6hm5n9M77DFDDP_wlvrQhwEpRuywH6hPudtGGELqpzuFvAlDhryjGyihUL_t3TQsn-kyp46Gku4wdTjk4Cj0EHeTGhK9WS7Wr8kLD7Hgm8N5Qr4vF9_OLqrV1_PLs_mqctIYWXmppBFcga4lA147JVTrzbgACqc9N0qpZiNaces3woNWwLExxrAWnG-4q0_Ix33uT4j2IYdu_K9NEOzFfGWnN8YbpQ3Tv_lo3-_tQ06PWyyD7UJxGCP0mLbFtqbhWhspR_lhL11OpWT0x2jO7NS8HZu3U_MjfXcIheIg-gy9C-XoRc1kY2o1umrv_oSIu__m2av14pB78KEM-PfoIf-yja61sj-uzu2Xm3Z9LQW31_UTJEqgAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>896177944</pqid></control><display><type>article</type><title>A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Benson, D. J. ; Bazilevs, Y. ; De Luycker, E. ; Hsu, M.-C. ; Scott, M. ; Hughes, T. J. R. ; Belytschko, T.</creator><creatorcontrib>Benson, D. J. ; Bazilevs, Y. ; De Luycker, E. ; Hsu, M.-C. ; Scott, M. ; Hughes, T. J. R. ; Belytschko, T.</creatorcontrib><description>Many of the formulations of current research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non‐linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from the analysis, resulting in a formulation that can be implemented within the traditional structure of a finite element program but that permits the use of arbitrary sets of basis functions that are defined only through the input file. Elements ranging from a traditional linear four‐node tetrahedron through a higher‐order element combining XFEM and isogeometric analysis may be specified entirely through an input file without any additional programming. Examples of this framework to applications with Lagrange elements, isogeometric elements, and XFEM basis functions for fracture are presented. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>ISSN: 1097-0207</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.2864</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Basis functions ; Contact ; Copyrights ; Engineering Sciences ; Exact sciences and technology ; Finite element method ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; generalized elements ; isogeometric analysis ; Mathematical analysis ; Mathematical models ; Mathematics ; Mechanics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Numerical Analysis ; Numerical analysis. Scientific computation ; NURBS ; Physics ; Programming ; Sciences and techniques of general use ; shells ; Solid mechanics ; Structural and continuum mechanics ; XFEM</subject><ispartof>International journal for numerical methods in engineering, 2010-08, Vol.83 (6), p.765-785</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4994-f4549215a7340a13c5258f9002e2c7f195556b282dfb2fa75a1e699908acf61c3</citedby><cites>FETCH-LOGICAL-c4994-f4549215a7340a13c5258f9002e2c7f195556b282dfb2fa75a1e699908acf61c3</cites><orcidid>0000-0003-1646-2851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.2864$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.2864$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23046935$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01657907$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Benson, D. J.</creatorcontrib><creatorcontrib>Bazilevs, Y.</creatorcontrib><creatorcontrib>De Luycker, E.</creatorcontrib><creatorcontrib>Hsu, M.-C.</creatorcontrib><creatorcontrib>Scott, M.</creatorcontrib><creatorcontrib>Hughes, T. J. R.</creatorcontrib><creatorcontrib>Belytschko, T.</creatorcontrib><title>A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>Many of the formulations of current research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non‐linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from the analysis, resulting in a formulation that can be implemented within the traditional structure of a finite element program but that permits the use of arbitrary sets of basis functions that are defined only through the input file. Elements ranging from a traditional linear four‐node tetrahedron through a higher‐order element combining XFEM and isogeometric analysis may be specified entirely through an input file without any additional programming. Examples of this framework to applications with Lagrange elements, isogeometric elements, and XFEM basis functions for fracture are presented. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Basis functions</subject><subject>Contact</subject><subject>Copyrights</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>generalized elements</subject><subject>isogeometric analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mechanics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Numerical Analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>NURBS</subject><subject>Physics</subject><subject>Programming</subject><subject>Sciences and techniques of general use</subject><subject>shells</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>XFEM</subject><issn>0029-5981</issn><issn>1097-0207</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp10MFuEzEQBmALgUQoSDyCLwg4bLG99nrNLSpJWykph4LozZq44-LiXbf2BghP310lyo2TLc-nX56fkLecnXLGxKe-w1PRNvIZmXFmdMUE08_JbByZSpmWvySvSrlnjHPF6hm5n9M77DFDDP_wlvrQhwEpRuywH6hPudtGGELqpzuFvAlDhryjGyihUL_t3TQsn-kyp46Gku4wdTjk4Cj0EHeTGhK9WS7Wr8kLD7Hgm8N5Qr4vF9_OLqrV1_PLs_mqctIYWXmppBFcga4lA147JVTrzbgACqc9N0qpZiNaces3woNWwLExxrAWnG-4q0_Ix33uT4j2IYdu_K9NEOzFfGWnN8YbpQ3Tv_lo3-_tQ06PWyyD7UJxGCP0mLbFtqbhWhspR_lhL11OpWT0x2jO7NS8HZu3U_MjfXcIheIg-gy9C-XoRc1kY2o1umrv_oSIu__m2av14pB78KEM-PfoIf-yja61sj-uzu2Xm3Z9LQW31_UTJEqgAw</recordid><startdate>20100806</startdate><enddate>20100806</enddate><creator>Benson, D. J.</creator><creator>Bazilevs, Y.</creator><creator>De Luycker, E.</creator><creator>Hsu, M.-C.</creator><creator>Scott, M.</creator><creator>Hughes, T. J. R.</creator><creator>Belytschko, T.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1646-2851</orcidid></search><sort><creationdate>20100806</creationdate><title>A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM</title><author>Benson, D. J. ; Bazilevs, Y. ; De Luycker, E. ; Hsu, M.-C. ; Scott, M. ; Hughes, T. J. R. ; Belytschko, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4994-f4549215a7340a13c5258f9002e2c7f195556b282dfb2fa75a1e699908acf61c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Basis functions</topic><topic>Contact</topic><topic>Copyrights</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>generalized elements</topic><topic>isogeometric analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mechanics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Numerical Analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>NURBS</topic><topic>Physics</topic><topic>Programming</topic><topic>Sciences and techniques of general use</topic><topic>shells</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>XFEM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benson, D. J.</creatorcontrib><creatorcontrib>Bazilevs, Y.</creatorcontrib><creatorcontrib>De Luycker, E.</creatorcontrib><creatorcontrib>Hsu, M.-C.</creatorcontrib><creatorcontrib>Scott, M.</creatorcontrib><creatorcontrib>Hughes, T. J. R.</creatorcontrib><creatorcontrib>Belytschko, T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benson, D. J.</au><au>Bazilevs, Y.</au><au>De Luycker, E.</au><au>Hsu, M.-C.</au><au>Scott, M.</au><au>Hughes, T. J. R.</au><au>Belytschko, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2010-08-06</date><risdate>2010</risdate><volume>83</volume><issue>6</issue><spage>765</spage><epage>785</epage><pages>765-785</pages><issn>0029-5981</issn><issn>1097-0207</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>Many of the formulations of current research interest, including iosogeometric methods and the extended finite element method, use nontraditional basis functions. Some, such as subdivision surfaces, may not have convenient analytical representations. The concept of an element, if appropriate at all, no longer coincides with the traditional definition. Developing a new software for each new class of basis functions is a large research burden, especially, if the problems involve large deformations, non‐linear materials, and contact. The objective of this paper is to present a method that separates as much as possible the generation and evaluation of the basis functions from the analysis, resulting in a formulation that can be implemented within the traditional structure of a finite element program but that permits the use of arbitrary sets of basis functions that are defined only through the input file. Elements ranging from a traditional linear four‐node tetrahedron through a higher‐order element combining XFEM and isogeometric analysis may be specified entirely through an input file without any additional programming. Examples of this framework to applications with Lagrange elements, isogeometric elements, and XFEM basis functions for fracture are presented. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.2864</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1646-2851</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2010-08, Vol.83 (6), p.765-785
issn 0029-5981
1097-0207
1097-0207
language eng
recordid cdi_hal_primary_oai_HAL_hal_01657907v1
source Wiley Online Library Journals Frontfile Complete
subjects Basis functions
Contact
Copyrights
Engineering Sciences
Exact sciences and technology
Finite element method
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
generalized elements
isogeometric analysis
Mathematical analysis
Mathematical models
Mathematics
Mechanics
Methods of scientific computing (including symbolic computation, algebraic computation)
Numerical Analysis
Numerical analysis. Scientific computation
NURBS
Physics
Programming
Sciences and techniques of general use
shells
Solid mechanics
Structural and continuum mechanics
XFEM
title A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalized%20finite%20element%20formulation%20for%20arbitrary%20basis%20functions:%20From%20isogeometric%20analysis%20to%20XFEM&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Benson,%20D.%20J.&rft.date=2010-08-06&rft.volume=83&rft.issue=6&rft.spage=765&rft.epage=785&rft.pages=765-785&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.2864&rft_dat=%3Cproquest_hal_p%3E896177944%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=896177944&rft_id=info:pmid/&rfr_iscdi=true