Remote entanglement stabilization and concentration by quantum reservoir engineering

Quantum information processing in a modular architecture requires the distribution, stabilization, and distillation of entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two superconducting qubits that are coupled to distant cavities. The coupling bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. A 2018-07, Vol.98 (1), Article 012329
Hauptverfasser: Didier, Nicolas, Guillaud, Jérémie, Shankar, Shyam, Mirrahimi, Mazyar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Physical review. A
container_volume 98
creator Didier, Nicolas
Guillaud, Jérémie
Shankar, Shyam
Mirrahimi, Mazyar
description Quantum information processing in a modular architecture requires the distribution, stabilization, and distillation of entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two superconducting qubits that are coupled to distant cavities. The coupling between cavities is mediated and controlled via a three-wave mixing device that generates either a two-mode squeezed state or a delocalized mode between the remote cavities depending on the pump applied to the mixer. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. Most spectacularly, even a weakly squeezed state can stabilize a maximally entangled Bell state of two distant qubits through an autonomous entanglement concentration process. Moreover, we show that such reservoir-engineering-based protocols can stabilize entanglement in the presence of qubit-cavity asymmetries and losses.
doi_str_mv 10.1103/PhysRevA.98.012329
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01652766v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01652766v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e690b69f4b2ebee8f770abdd5962c35f5528d89e4f70844d91c59ad1428406a3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AUxBdRsNR-AU-5ekjd_8k7lqK2UFBK78smeWlXko3upoX66U2J9vSGmXlz-BHyyOicMSqePw7nuMXTYg75nDIuONyQCZcaUgAhb6-a63syi_GTUsoUgBZ6QnZbbLseE_S99fsG20EksbeFa9yP7V3nE-urpOx8OSRhdIpz8n20vj-2ScCI4dS5MCzsnUcMzu8fyF1tm4izvzslu9eX3XKVbt7f1svFJi0FV32KGmihoZYFxwIxr7OM2qKqFGheClUrxfMqB5R1RnMpK2ClAlsxyXNJtRVT8jTOHmxjvoJrbTibzjqzWmzMxaNMK55pfWJDl4_dMnQxBqyvD4yaC0XzT9FAbkaK4hfKJGi3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remote entanglement stabilization and concentration by quantum reservoir engineering</title><source>American Physical Society Journals</source><creator>Didier, Nicolas ; Guillaud, Jérémie ; Shankar, Shyam ; Mirrahimi, Mazyar</creator><creatorcontrib>Didier, Nicolas ; Guillaud, Jérémie ; Shankar, Shyam ; Mirrahimi, Mazyar</creatorcontrib><description>Quantum information processing in a modular architecture requires the distribution, stabilization, and distillation of entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two superconducting qubits that are coupled to distant cavities. The coupling between cavities is mediated and controlled via a three-wave mixing device that generates either a two-mode squeezed state or a delocalized mode between the remote cavities depending on the pump applied to the mixer. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. Most spectacularly, even a weakly squeezed state can stabilize a maximally entangled Bell state of two distant qubits through an autonomous entanglement concentration process. Moreover, we show that such reservoir-engineering-based protocols can stabilize entanglement in the presence of qubit-cavity asymmetries and losses.</description><identifier>ISSN: 2469-9926</identifier><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 2469-9934</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.98.012329</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Mathematical Physics ; Mathematics</subject><ispartof>Physical review. A, 2018-07, Vol.98 (1), Article 012329</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-e690b69f4b2ebee8f770abdd5962c35f5528d89e4f70844d91c59ad1428406a3</citedby><cites>FETCH-LOGICAL-c325t-e690b69f4b2ebee8f770abdd5962c35f5528d89e4f70844d91c59ad1428406a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01652766$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Didier, Nicolas</creatorcontrib><creatorcontrib>Guillaud, Jérémie</creatorcontrib><creatorcontrib>Shankar, Shyam</creatorcontrib><creatorcontrib>Mirrahimi, Mazyar</creatorcontrib><title>Remote entanglement stabilization and concentration by quantum reservoir engineering</title><title>Physical review. A</title><description>Quantum information processing in a modular architecture requires the distribution, stabilization, and distillation of entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two superconducting qubits that are coupled to distant cavities. The coupling between cavities is mediated and controlled via a three-wave mixing device that generates either a two-mode squeezed state or a delocalized mode between the remote cavities depending on the pump applied to the mixer. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. Most spectacularly, even a weakly squeezed state can stabilize a maximally entangled Bell state of two distant qubits through an autonomous entanglement concentration process. Moreover, we show that such reservoir-engineering-based protocols can stabilize entanglement in the presence of qubit-cavity asymmetries and losses.</description><subject>Mathematical Physics</subject><subject>Mathematics</subject><issn>2469-9926</issn><issn>1050-2947</issn><issn>2469-9934</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AUxBdRsNR-AU-5ekjd_8k7lqK2UFBK78smeWlXko3upoX66U2J9vSGmXlz-BHyyOicMSqePw7nuMXTYg75nDIuONyQCZcaUgAhb6-a63syi_GTUsoUgBZ6QnZbbLseE_S99fsG20EksbeFa9yP7V3nE-urpOx8OSRhdIpz8n20vj-2ScCI4dS5MCzsnUcMzu8fyF1tm4izvzslu9eX3XKVbt7f1svFJi0FV32KGmihoZYFxwIxr7OM2qKqFGheClUrxfMqB5R1RnMpK2ClAlsxyXNJtRVT8jTOHmxjvoJrbTibzjqzWmzMxaNMK55pfWJDl4_dMnQxBqyvD4yaC0XzT9FAbkaK4hfKJGi3</recordid><startdate>20180727</startdate><enddate>20180727</enddate><creator>Didier, Nicolas</creator><creator>Guillaud, Jérémie</creator><creator>Shankar, Shyam</creator><creator>Mirrahimi, Mazyar</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20180727</creationdate><title>Remote entanglement stabilization and concentration by quantum reservoir engineering</title><author>Didier, Nicolas ; Guillaud, Jérémie ; Shankar, Shyam ; Mirrahimi, Mazyar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e690b69f4b2ebee8f770abdd5962c35f5528d89e4f70844d91c59ad1428406a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematical Physics</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Didier, Nicolas</creatorcontrib><creatorcontrib>Guillaud, Jérémie</creatorcontrib><creatorcontrib>Shankar, Shyam</creatorcontrib><creatorcontrib>Mirrahimi, Mazyar</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Didier, Nicolas</au><au>Guillaud, Jérémie</au><au>Shankar, Shyam</au><au>Mirrahimi, Mazyar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote entanglement stabilization and concentration by quantum reservoir engineering</atitle><jtitle>Physical review. A</jtitle><date>2018-07-27</date><risdate>2018</risdate><volume>98</volume><issue>1</issue><artnum>012329</artnum><issn>2469-9926</issn><issn>1050-2947</issn><eissn>2469-9934</eissn><eissn>1094-1622</eissn><abstract>Quantum information processing in a modular architecture requires the distribution, stabilization, and distillation of entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two superconducting qubits that are coupled to distant cavities. The coupling between cavities is mediated and controlled via a three-wave mixing device that generates either a two-mode squeezed state or a delocalized mode between the remote cavities depending on the pump applied to the mixer. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. Most spectacularly, even a weakly squeezed state can stabilize a maximally entangled Bell state of two distant qubits through an autonomous entanglement concentration process. Moreover, we show that such reservoir-engineering-based protocols can stabilize entanglement in the presence of qubit-cavity asymmetries and losses.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevA.98.012329</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9926
ispartof Physical review. A, 2018-07, Vol.98 (1), Article 012329
issn 2469-9926
1050-2947
2469-9934
1094-1622
language eng
recordid cdi_hal_primary_oai_HAL_hal_01652766v1
source American Physical Society Journals
subjects Mathematical Physics
Mathematics
title Remote entanglement stabilization and concentration by quantum reservoir engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20entanglement%20stabilization%20and%20concentration%20by%20quantum%20reservoir%20engineering&rft.jtitle=Physical%20review.%20A&rft.au=Didier,%20Nicolas&rft.date=2018-07-27&rft.volume=98&rft.issue=1&rft.artnum=012329&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.98.012329&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01652766v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true