Remote entanglement stabilization and concentration by quantum reservoir engineering
Quantum information processing in a modular architecture requires the distribution, stabilization, and distillation of entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two superconducting qubits that are coupled to distant cavities. The coupling bet...
Gespeichert in:
Veröffentlicht in: | Physical review. A 2018-07, Vol.98 (1), Article 012329 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physical review. A |
container_volume | 98 |
creator | Didier, Nicolas Guillaud, Jérémie Shankar, Shyam Mirrahimi, Mazyar |
description | Quantum information processing in a modular architecture requires the distribution, stabilization, and distillation of entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two superconducting qubits that are coupled to distant cavities. The coupling between cavities is mediated and controlled via a three-wave mixing device that generates either a two-mode squeezed state or a delocalized mode between the remote cavities depending on the pump applied to the mixer. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. Most spectacularly, even a weakly squeezed state can stabilize a maximally entangled Bell state of two distant qubits through an autonomous entanglement concentration process. Moreover, we show that such reservoir-engineering-based protocols can stabilize entanglement in the presence of qubit-cavity asymmetries and losses. |
doi_str_mv | 10.1103/PhysRevA.98.012329 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01652766v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01652766v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e690b69f4b2ebee8f770abdd5962c35f5528d89e4f70844d91c59ad1428406a3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AUxBdRsNR-AU-5ekjd_8k7lqK2UFBK78smeWlXko3upoX66U2J9vSGmXlz-BHyyOicMSqePw7nuMXTYg75nDIuONyQCZcaUgAhb6-a63syi_GTUsoUgBZ6QnZbbLseE_S99fsG20EksbeFa9yP7V3nE-urpOx8OSRhdIpz8n20vj-2ScCI4dS5MCzsnUcMzu8fyF1tm4izvzslu9eX3XKVbt7f1svFJi0FV32KGmihoZYFxwIxr7OM2qKqFGheClUrxfMqB5R1RnMpK2ClAlsxyXNJtRVT8jTOHmxjvoJrbTibzjqzWmzMxaNMK55pfWJDl4_dMnQxBqyvD4yaC0XzT9FAbkaK4hfKJGi3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remote entanglement stabilization and concentration by quantum reservoir engineering</title><source>American Physical Society Journals</source><creator>Didier, Nicolas ; Guillaud, Jérémie ; Shankar, Shyam ; Mirrahimi, Mazyar</creator><creatorcontrib>Didier, Nicolas ; Guillaud, Jérémie ; Shankar, Shyam ; Mirrahimi, Mazyar</creatorcontrib><description>Quantum information processing in a modular architecture requires the distribution, stabilization, and distillation of entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two superconducting qubits that are coupled to distant cavities. The coupling between cavities is mediated and controlled via a three-wave mixing device that generates either a two-mode squeezed state or a delocalized mode between the remote cavities depending on the pump applied to the mixer. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. Most spectacularly, even a weakly squeezed state can stabilize a maximally entangled Bell state of two distant qubits through an autonomous entanglement concentration process. Moreover, we show that such reservoir-engineering-based protocols can stabilize entanglement in the presence of qubit-cavity asymmetries and losses.</description><identifier>ISSN: 2469-9926</identifier><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 2469-9934</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.98.012329</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Mathematical Physics ; Mathematics</subject><ispartof>Physical review. A, 2018-07, Vol.98 (1), Article 012329</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-e690b69f4b2ebee8f770abdd5962c35f5528d89e4f70844d91c59ad1428406a3</citedby><cites>FETCH-LOGICAL-c325t-e690b69f4b2ebee8f770abdd5962c35f5528d89e4f70844d91c59ad1428406a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01652766$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Didier, Nicolas</creatorcontrib><creatorcontrib>Guillaud, Jérémie</creatorcontrib><creatorcontrib>Shankar, Shyam</creatorcontrib><creatorcontrib>Mirrahimi, Mazyar</creatorcontrib><title>Remote entanglement stabilization and concentration by quantum reservoir engineering</title><title>Physical review. A</title><description>Quantum information processing in a modular architecture requires the distribution, stabilization, and distillation of entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two superconducting qubits that are coupled to distant cavities. The coupling between cavities is mediated and controlled via a three-wave mixing device that generates either a two-mode squeezed state or a delocalized mode between the remote cavities depending on the pump applied to the mixer. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. Most spectacularly, even a weakly squeezed state can stabilize a maximally entangled Bell state of two distant qubits through an autonomous entanglement concentration process. Moreover, we show that such reservoir-engineering-based protocols can stabilize entanglement in the presence of qubit-cavity asymmetries and losses.</description><subject>Mathematical Physics</subject><subject>Mathematics</subject><issn>2469-9926</issn><issn>1050-2947</issn><issn>2469-9934</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE9Lw0AUxBdRsNR-AU-5ekjd_8k7lqK2UFBK78smeWlXko3upoX66U2J9vSGmXlz-BHyyOicMSqePw7nuMXTYg75nDIuONyQCZcaUgAhb6-a63syi_GTUsoUgBZ6QnZbbLseE_S99fsG20EksbeFa9yP7V3nE-urpOx8OSRhdIpz8n20vj-2ScCI4dS5MCzsnUcMzu8fyF1tm4izvzslu9eX3XKVbt7f1svFJi0FV32KGmihoZYFxwIxr7OM2qKqFGheClUrxfMqB5R1RnMpK2ClAlsxyXNJtRVT8jTOHmxjvoJrbTibzjqzWmzMxaNMK55pfWJDl4_dMnQxBqyvD4yaC0XzT9FAbkaK4hfKJGi3</recordid><startdate>20180727</startdate><enddate>20180727</enddate><creator>Didier, Nicolas</creator><creator>Guillaud, Jérémie</creator><creator>Shankar, Shyam</creator><creator>Mirrahimi, Mazyar</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20180727</creationdate><title>Remote entanglement stabilization and concentration by quantum reservoir engineering</title><author>Didier, Nicolas ; Guillaud, Jérémie ; Shankar, Shyam ; Mirrahimi, Mazyar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e690b69f4b2ebee8f770abdd5962c35f5528d89e4f70844d91c59ad1428406a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematical Physics</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Didier, Nicolas</creatorcontrib><creatorcontrib>Guillaud, Jérémie</creatorcontrib><creatorcontrib>Shankar, Shyam</creatorcontrib><creatorcontrib>Mirrahimi, Mazyar</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Didier, Nicolas</au><au>Guillaud, Jérémie</au><au>Shankar, Shyam</au><au>Mirrahimi, Mazyar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote entanglement stabilization and concentration by quantum reservoir engineering</atitle><jtitle>Physical review. A</jtitle><date>2018-07-27</date><risdate>2018</risdate><volume>98</volume><issue>1</issue><artnum>012329</artnum><issn>2469-9926</issn><issn>1050-2947</issn><eissn>2469-9934</eissn><eissn>1094-1622</eissn><abstract>Quantum information processing in a modular architecture requires the distribution, stabilization, and distillation of entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two superconducting qubits that are coupled to distant cavities. The coupling between cavities is mediated and controlled via a three-wave mixing device that generates either a two-mode squeezed state or a delocalized mode between the remote cavities depending on the pump applied to the mixer. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. Most spectacularly, even a weakly squeezed state can stabilize a maximally entangled Bell state of two distant qubits through an autonomous entanglement concentration process. Moreover, we show that such reservoir-engineering-based protocols can stabilize entanglement in the presence of qubit-cavity asymmetries and losses.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevA.98.012329</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9926 |
ispartof | Physical review. A, 2018-07, Vol.98 (1), Article 012329 |
issn | 2469-9926 1050-2947 2469-9934 1094-1622 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01652766v1 |
source | American Physical Society Journals |
subjects | Mathematical Physics Mathematics |
title | Remote entanglement stabilization and concentration by quantum reservoir engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20entanglement%20stabilization%20and%20concentration%20by%20quantum%20reservoir%20engineering&rft.jtitle=Physical%20review.%20A&rft.au=Didier,%20Nicolas&rft.date=2018-07-27&rft.volume=98&rft.issue=1&rft.artnum=012329&rft.issn=2469-9926&rft.eissn=2469-9934&rft_id=info:doi/10.1103/PhysRevA.98.012329&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01652766v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |