Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells
In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and...
Gespeichert in:
Veröffentlicht in: | Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2018-04, Vol.120, p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Bioelectrochemistry (Amsterdam, Netherlands) |
container_volume | 120 |
creator | Pinto, David Coradin, Thibaud Laberty-Robert, Christel |
description | In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between −0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (−0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells.
•The polarization of the bioanode had an impact on MFC performance.•Biofilm microstructure changed with the sign of polarization.•The colonization of the bioanode was governed by the sign and the value of the polarization. |
doi_str_mv | 10.1016/j.bioelechem.2017.10.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01651845v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539417302979</els_id><sourcerecordid>1964272126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-a0b2cf8a3ea091721d06fe0bc97f851424bc9fe6120df8810755f040e42603893</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEohd4BWSJDSwytZ3YcZalKi3SSF0AEjvLcY4Zj5x4sJNWsOXFe6K0RWJTyZLt4-_3ufxFQRjdMMrk2X7T-QgB7A6GDaeswfCGUvWiOGaqUaWQ_MdLPAvZlKJq66PiJOc9RYI14nVxxFtWoYwdF38vnQM7keiIGWMP5BCDSf6PmXwcCS5M5HwYiItpWINm7MmSe0p4mZIZs4NE_Ei-7uDOjBCCQSH4Hsbs89nPZA47PwFxECYyeJti500gboZALNL5TfHKmZDh7cN-Wnz_fPnt4rrc3lx9uTjfllYIPpWGdtw6ZSowtGUNZz2VDmhn28YpwWpe49GBZJz2TilGGyEcrSnUXNJKtdVp8XH9d2eCPiQ_mPRbR-P19flWLzEcrWCqFrcM2Q8re0jx1wx50oPPS7XYYJyzZq2sOdbAJaLv_0P3cU4jdqI5lZWSVdNSpNRKYf85J3BPFTCqF1P1Xv8zVS-mLi9oGUrfPSSYuwH6J-Gjiwh8WgHA6d16SDpbD6OF3if0SffRP5_lHvVeuFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063863790</pqid></control><display><type>article</type><title>Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pinto, David ; Coradin, Thibaud ; Laberty-Robert, Christel</creator><creatorcontrib>Pinto, David ; Coradin, Thibaud ; Laberty-Robert, Christel</creatorcontrib><description>In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between −0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (−0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells.
•The polarization of the bioanode had an impact on MFC performance.•Biofilm microstructure changed with the sign of polarization.•The colonization of the bioanode was governed by the sign and the value of the polarization.</description><identifier>ISSN: 1567-5394</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/j.bioelechem.2017.10.008</identifier><identifier>PMID: 29132011</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Amperometry ; Anode effect ; Anodic polarization ; Bacteria ; Bacteria/carbon interface ; Biochemical fuel cells ; Biodegradation ; Bioelectric Energy Sources - microbiology ; Biofilm ; Biofilms ; Chemical Sciences ; Colonization ; Electrical measurement ; Electricity ; Electricity generation ; Electroactivity ; Electrochemical Techniques - instrumentation ; Electrochemistry ; Electrodes ; Electron transfer ; Electron Transport ; Electrons ; Fibers ; Fuel cells ; Fuel technology ; Graphite ; Graphite - chemistry ; Microbial fuel cell ; Microorganisms ; Nuclear fuels ; Organic chemistry ; Other ; Polarization ; Porosity ; Potassium chloride ; Shewanella - physiology ; Shewanella oneidensis ; Silver chloride</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2018-04, Vol.120, p.1-9</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-a0b2cf8a3ea091721d06fe0bc97f851424bc9fe6120df8810755f040e42603893</citedby><cites>FETCH-LOGICAL-c552t-a0b2cf8a3ea091721d06fe0bc97f851424bc9fe6120df8810755f040e42603893</cites><orcidid>0000-0003-3374-5722 ; 0000-0003-3230-3164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1567539417302979$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29132011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01651845$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinto, David</creatorcontrib><creatorcontrib>Coradin, Thibaud</creatorcontrib><creatorcontrib>Laberty-Robert, Christel</creatorcontrib><title>Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between −0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (−0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells.
•The polarization of the bioanode had an impact on MFC performance.•Biofilm microstructure changed with the sign of polarization.•The colonization of the bioanode was governed by the sign and the value of the polarization.</description><subject>Amperometry</subject><subject>Anode effect</subject><subject>Anodic polarization</subject><subject>Bacteria</subject><subject>Bacteria/carbon interface</subject><subject>Biochemical fuel cells</subject><subject>Biodegradation</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>Biofilm</subject><subject>Biofilms</subject><subject>Chemical Sciences</subject><subject>Colonization</subject><subject>Electrical measurement</subject><subject>Electricity</subject><subject>Electricity generation</subject><subject>Electroactivity</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>Fibers</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Graphite</subject><subject>Graphite - chemistry</subject><subject>Microbial fuel cell</subject><subject>Microorganisms</subject><subject>Nuclear fuels</subject><subject>Organic chemistry</subject><subject>Other</subject><subject>Polarization</subject><subject>Porosity</subject><subject>Potassium chloride</subject><subject>Shewanella - physiology</subject><subject>Shewanella oneidensis</subject><subject>Silver chloride</subject><issn>1567-5394</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhiMEohd4BWSJDSwytZ3YcZalKi3SSF0AEjvLcY4Zj5x4sJNWsOXFe6K0RWJTyZLt4-_3ufxFQRjdMMrk2X7T-QgB7A6GDaeswfCGUvWiOGaqUaWQ_MdLPAvZlKJq66PiJOc9RYI14nVxxFtWoYwdF38vnQM7keiIGWMP5BCDSf6PmXwcCS5M5HwYiItpWINm7MmSe0p4mZIZs4NE_Ei-7uDOjBCCQSH4Hsbs89nPZA47PwFxECYyeJti500gboZALNL5TfHKmZDh7cN-Wnz_fPnt4rrc3lx9uTjfllYIPpWGdtw6ZSowtGUNZz2VDmhn28YpwWpe49GBZJz2TilGGyEcrSnUXNJKtdVp8XH9d2eCPiQ_mPRbR-P19flWLzEcrWCqFrcM2Q8re0jx1wx50oPPS7XYYJyzZq2sOdbAJaLv_0P3cU4jdqI5lZWSVdNSpNRKYf85J3BPFTCqF1P1Xv8zVS-mLi9oGUrfPSSYuwH6J-Gjiwh8WgHA6d16SDpbD6OF3if0SffRP5_lHvVeuFs</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Pinto, David</creator><creator>Coradin, Thibaud</creator><creator>Laberty-Robert, Christel</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3374-5722</orcidid><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid></search><sort><creationdate>20180401</creationdate><title>Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells</title><author>Pinto, David ; Coradin, Thibaud ; Laberty-Robert, Christel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-a0b2cf8a3ea091721d06fe0bc97f851424bc9fe6120df8810755f040e42603893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amperometry</topic><topic>Anode effect</topic><topic>Anodic polarization</topic><topic>Bacteria</topic><topic>Bacteria/carbon interface</topic><topic>Biochemical fuel cells</topic><topic>Biodegradation</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>Biofilm</topic><topic>Biofilms</topic><topic>Chemical Sciences</topic><topic>Colonization</topic><topic>Electrical measurement</topic><topic>Electricity</topic><topic>Electricity generation</topic><topic>Electroactivity</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>Fibers</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Graphite</topic><topic>Graphite - chemistry</topic><topic>Microbial fuel cell</topic><topic>Microorganisms</topic><topic>Nuclear fuels</topic><topic>Organic chemistry</topic><topic>Other</topic><topic>Polarization</topic><topic>Porosity</topic><topic>Potassium chloride</topic><topic>Shewanella - physiology</topic><topic>Shewanella oneidensis</topic><topic>Silver chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinto, David</creatorcontrib><creatorcontrib>Coradin, Thibaud</creatorcontrib><creatorcontrib>Laberty-Robert, Christel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinto, David</au><au>Coradin, Thibaud</au><au>Laberty-Robert, Christel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>120</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1567-5394</issn><eissn>1878-562X</eissn><abstract>In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between −0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (−0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells.
•The polarization of the bioanode had an impact on MFC performance.•Biofilm microstructure changed with the sign of polarization.•The colonization of the bioanode was governed by the sign and the value of the polarization.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29132011</pmid><doi>10.1016/j.bioelechem.2017.10.008</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3374-5722</orcidid><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-5394 |
ispartof | Bioelectrochemistry (Amsterdam, Netherlands), 2018-04, Vol.120, p.1-9 |
issn | 1567-5394 1878-562X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01651845v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Amperometry Anode effect Anodic polarization Bacteria Bacteria/carbon interface Biochemical fuel cells Biodegradation Bioelectric Energy Sources - microbiology Biofilm Biofilms Chemical Sciences Colonization Electrical measurement Electricity Electricity generation Electroactivity Electrochemical Techniques - instrumentation Electrochemistry Electrodes Electron transfer Electron Transport Electrons Fibers Fuel cells Fuel technology Graphite Graphite - chemistry Microbial fuel cell Microorganisms Nuclear fuels Organic chemistry Other Polarization Porosity Potassium chloride Shewanella - physiology Shewanella oneidensis Silver chloride |
title | Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A41%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20anode%20polarization%20on%20biofilm%20formation%20and%20electron%20transfer%20in%20Shewanella%20oneidensis/graphite%20felt%20microbial%20fuel%20cells&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Pinto,%20David&rft.date=2018-04-01&rft.volume=120&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/j.bioelechem.2017.10.008&rft_dat=%3Cproquest_hal_p%3E1964272126%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063863790&rft_id=info:pmid/29132011&rft_els_id=S1567539417302979&rfr_iscdi=true |