Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells

In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioelectrochemistry (Amsterdam, Netherlands) Netherlands), 2018-04, Vol.120, p.1-9
Hauptverfasser: Pinto, David, Coradin, Thibaud, Laberty-Robert, Christel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Bioelectrochemistry (Amsterdam, Netherlands)
container_volume 120
creator Pinto, David
Coradin, Thibaud
Laberty-Robert, Christel
description In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between −0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (−0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. •The polarization of the bioanode had an impact on MFC performance.•Biofilm microstructure changed with the sign of polarization.•The colonization of the bioanode was governed by the sign and the value of the polarization.
doi_str_mv 10.1016/j.bioelechem.2017.10.008
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01651845v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1567539417302979</els_id><sourcerecordid>1964272126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-a0b2cf8a3ea091721d06fe0bc97f851424bc9fe6120df8810755f040e42603893</originalsourceid><addsrcrecordid>eNqFkctu1DAUhiMEohd4BWSJDSwytZ3YcZalKi3SSF0AEjvLcY4Zj5x4sJNWsOXFe6K0RWJTyZLt4-_3ufxFQRjdMMrk2X7T-QgB7A6GDaeswfCGUvWiOGaqUaWQ_MdLPAvZlKJq66PiJOc9RYI14nVxxFtWoYwdF38vnQM7keiIGWMP5BCDSf6PmXwcCS5M5HwYiItpWINm7MmSe0p4mZIZs4NE_Ei-7uDOjBCCQSH4Hsbs89nPZA47PwFxECYyeJti500gboZALNL5TfHKmZDh7cN-Wnz_fPnt4rrc3lx9uTjfllYIPpWGdtw6ZSowtGUNZz2VDmhn28YpwWpe49GBZJz2TilGGyEcrSnUXNJKtdVp8XH9d2eCPiQ_mPRbR-P19flWLzEcrWCqFrcM2Q8re0jx1wx50oPPS7XYYJyzZq2sOdbAJaLv_0P3cU4jdqI5lZWSVdNSpNRKYf85J3BPFTCqF1P1Xv8zVS-mLi9oGUrfPSSYuwH6J-Gjiwh8WgHA6d16SDpbD6OF3if0SffRP5_lHvVeuFs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063863790</pqid></control><display><type>article</type><title>Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pinto, David ; Coradin, Thibaud ; Laberty-Robert, Christel</creator><creatorcontrib>Pinto, David ; Coradin, Thibaud ; Laberty-Robert, Christel</creatorcontrib><description>In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between −0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (−0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. •The polarization of the bioanode had an impact on MFC performance.•Biofilm microstructure changed with the sign of polarization.•The colonization of the bioanode was governed by the sign and the value of the polarization.</description><identifier>ISSN: 1567-5394</identifier><identifier>EISSN: 1878-562X</identifier><identifier>DOI: 10.1016/j.bioelechem.2017.10.008</identifier><identifier>PMID: 29132011</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Amperometry ; Anode effect ; Anodic polarization ; Bacteria ; Bacteria/carbon interface ; Biochemical fuel cells ; Biodegradation ; Bioelectric Energy Sources - microbiology ; Biofilm ; Biofilms ; Chemical Sciences ; Colonization ; Electrical measurement ; Electricity ; Electricity generation ; Electroactivity ; Electrochemical Techniques - instrumentation ; Electrochemistry ; Electrodes ; Electron transfer ; Electron Transport ; Electrons ; Fibers ; Fuel cells ; Fuel technology ; Graphite ; Graphite - chemistry ; Microbial fuel cell ; Microorganisms ; Nuclear fuels ; Organic chemistry ; Other ; Polarization ; Porosity ; Potassium chloride ; Shewanella - physiology ; Shewanella oneidensis ; Silver chloride</subject><ispartof>Bioelectrochemistry (Amsterdam, Netherlands), 2018-04, Vol.120, p.1-9</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Apr 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-a0b2cf8a3ea091721d06fe0bc97f851424bc9fe6120df8810755f040e42603893</citedby><cites>FETCH-LOGICAL-c552t-a0b2cf8a3ea091721d06fe0bc97f851424bc9fe6120df8810755f040e42603893</cites><orcidid>0000-0003-3374-5722 ; 0000-0003-3230-3164</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1567539417302979$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29132011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01651845$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinto, David</creatorcontrib><creatorcontrib>Coradin, Thibaud</creatorcontrib><creatorcontrib>Laberty-Robert, Christel</creatorcontrib><title>Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells</title><title>Bioelectrochemistry (Amsterdam, Netherlands)</title><addtitle>Bioelectrochemistry</addtitle><description>In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between −0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (−0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. •The polarization of the bioanode had an impact on MFC performance.•Biofilm microstructure changed with the sign of polarization.•The colonization of the bioanode was governed by the sign and the value of the polarization.</description><subject>Amperometry</subject><subject>Anode effect</subject><subject>Anodic polarization</subject><subject>Bacteria</subject><subject>Bacteria/carbon interface</subject><subject>Biochemical fuel cells</subject><subject>Biodegradation</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>Biofilm</subject><subject>Biofilms</subject><subject>Chemical Sciences</subject><subject>Colonization</subject><subject>Electrical measurement</subject><subject>Electricity</subject><subject>Electricity generation</subject><subject>Electroactivity</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>Fibers</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Graphite</subject><subject>Graphite - chemistry</subject><subject>Microbial fuel cell</subject><subject>Microorganisms</subject><subject>Nuclear fuels</subject><subject>Organic chemistry</subject><subject>Other</subject><subject>Polarization</subject><subject>Porosity</subject><subject>Potassium chloride</subject><subject>Shewanella - physiology</subject><subject>Shewanella oneidensis</subject><subject>Silver chloride</subject><issn>1567-5394</issn><issn>1878-562X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhiMEohd4BWSJDSwytZ3YcZalKi3SSF0AEjvLcY4Zj5x4sJNWsOXFe6K0RWJTyZLt4-_3ufxFQRjdMMrk2X7T-QgB7A6GDaeswfCGUvWiOGaqUaWQ_MdLPAvZlKJq66PiJOc9RYI14nVxxFtWoYwdF38vnQM7keiIGWMP5BCDSf6PmXwcCS5M5HwYiItpWINm7MmSe0p4mZIZs4NE_Ei-7uDOjBCCQSH4Hsbs89nPZA47PwFxECYyeJti500gboZALNL5TfHKmZDh7cN-Wnz_fPnt4rrc3lx9uTjfllYIPpWGdtw6ZSowtGUNZz2VDmhn28YpwWpe49GBZJz2TilGGyEcrSnUXNJKtdVp8XH9d2eCPiQ_mPRbR-P19flWLzEcrWCqFrcM2Q8re0jx1wx50oPPS7XYYJyzZq2sOdbAJaLv_0P3cU4jdqI5lZWSVdNSpNRKYf85J3BPFTCqF1P1Xv8zVS-mLi9oGUrfPSSYuwH6J-Gjiwh8WgHA6d16SDpbD6OF3if0SffRP5_lHvVeuFs</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Pinto, David</creator><creator>Coradin, Thibaud</creator><creator>Laberty-Robert, Christel</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3374-5722</orcidid><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid></search><sort><creationdate>20180401</creationdate><title>Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells</title><author>Pinto, David ; Coradin, Thibaud ; Laberty-Robert, Christel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-a0b2cf8a3ea091721d06fe0bc97f851424bc9fe6120df8810755f040e42603893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amperometry</topic><topic>Anode effect</topic><topic>Anodic polarization</topic><topic>Bacteria</topic><topic>Bacteria/carbon interface</topic><topic>Biochemical fuel cells</topic><topic>Biodegradation</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>Biofilm</topic><topic>Biofilms</topic><topic>Chemical Sciences</topic><topic>Colonization</topic><topic>Electrical measurement</topic><topic>Electricity</topic><topic>Electricity generation</topic><topic>Electroactivity</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>Fibers</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Graphite</topic><topic>Graphite - chemistry</topic><topic>Microbial fuel cell</topic><topic>Microorganisms</topic><topic>Nuclear fuels</topic><topic>Organic chemistry</topic><topic>Other</topic><topic>Polarization</topic><topic>Porosity</topic><topic>Potassium chloride</topic><topic>Shewanella - physiology</topic><topic>Shewanella oneidensis</topic><topic>Silver chloride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinto, David</creatorcontrib><creatorcontrib>Coradin, Thibaud</creatorcontrib><creatorcontrib>Laberty-Robert, Christel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinto, David</au><au>Coradin, Thibaud</au><au>Laberty-Robert, Christel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells</atitle><jtitle>Bioelectrochemistry (Amsterdam, Netherlands)</jtitle><addtitle>Bioelectrochemistry</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>120</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1567-5394</issn><eissn>1878-562X</eissn><abstract>In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between −0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (−0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. •The polarization of the bioanode had an impact on MFC performance.•Biofilm microstructure changed with the sign of polarization.•The colonization of the bioanode was governed by the sign and the value of the polarization.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29132011</pmid><doi>10.1016/j.bioelechem.2017.10.008</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3374-5722</orcidid><orcidid>https://orcid.org/0000-0003-3230-3164</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1567-5394
ispartof Bioelectrochemistry (Amsterdam, Netherlands), 2018-04, Vol.120, p.1-9
issn 1567-5394
1878-562X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01651845v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Amperometry
Anode effect
Anodic polarization
Bacteria
Bacteria/carbon interface
Biochemical fuel cells
Biodegradation
Bioelectric Energy Sources - microbiology
Biofilm
Biofilms
Chemical Sciences
Colonization
Electrical measurement
Electricity
Electricity generation
Electroactivity
Electrochemical Techniques - instrumentation
Electrochemistry
Electrodes
Electron transfer
Electron Transport
Electrons
Fibers
Fuel cells
Fuel technology
Graphite
Graphite - chemistry
Microbial fuel cell
Microorganisms
Nuclear fuels
Organic chemistry
Other
Polarization
Porosity
Potassium chloride
Shewanella - physiology
Shewanella oneidensis
Silver chloride
title Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A41%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20anode%20polarization%20on%20biofilm%20formation%20and%20electron%20transfer%20in%20Shewanella%20oneidensis/graphite%20felt%20microbial%20fuel%20cells&rft.jtitle=Bioelectrochemistry%20(Amsterdam,%20Netherlands)&rft.au=Pinto,%20David&rft.date=2018-04-01&rft.volume=120&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1567-5394&rft.eissn=1878-562X&rft_id=info:doi/10.1016/j.bioelechem.2017.10.008&rft_dat=%3Cproquest_hal_p%3E1964272126%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063863790&rft_id=info:pmid/29132011&rft_els_id=S1567539417302979&rfr_iscdi=true