Internal wave focusing by a horizontally oscillating torus

This paper presents an experimental study on internal waves emitted by a horizontally oscillating torus in a linearly stratified fluid. Two internal wave cones are generated with the kinetic energy focused at the apices of the cones above and below the torus where the wave amplitude is maximal. Thei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2017-02, Vol.813, p.695-715
Hauptverfasser: Ermanyuk, E. V., Shmakova, N. D., Flór, J.-B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 715
container_issue
container_start_page 695
container_title Journal of fluid mechanics
container_volume 813
creator Ermanyuk, E. V.
Shmakova, N. D.
Flór, J.-B.
description This paper presents an experimental study on internal waves emitted by a horizontally oscillating torus in a linearly stratified fluid. Two internal wave cones are generated with the kinetic energy focused at the apices of the cones above and below the torus where the wave amplitude is maximal. Their motion is measured via tracking of distortions of horizontal fluorescein dye planes created prior to the experiments and illuminated by a vertical laser sheet. The distortion of the dye planes gives a direct access to the Lagrangian displacement of local wave amplitudes and slopes, and in particular, allows us to calculate a local Richardson number. In addition particle image velocimetry measurements are used. Maximum wave slopes are found in the focal region and close to the surface of the torus. As the amplitude of oscillations of the torus increases, wave profiles in the regions of maximum wave slopes evolve nonlinearly toward local overturning. A theoretical approximation based on the theory of Hurley & Keady (J. Fluid Mech., vol. 351, 1997, pp. 119–138) is presented and shows, for small amplitudes of oscillation, a very reasonable agreement with the experimental data. For the focal region the internal wave amplitude is found to be overestimated by the theory. The wave breaking in the focal region is investigated as a function of the Keulegan–Carpenter number, $Ke=A/a$ , with $A$ the oscillation amplitude and $a$ the short radius of the torus. A linear wave regime is found for $Ke0.8$ . For large forcing, the measured wave amplitude normalized with the oscillation amplitude decreases almost everywhere in the wave field, but increases locally in the focal region due to nonlinear effects. Due to geometric focusing the amplitude of the wave increases with $\sqrt{\unicode[STIX]{x1D716}}$ , with $\unicode[STIX]{x1D716}=b/a$ and $b$ is the mean radius of the torus. The relevance of wave focusing due to ocean topography is discussed.
doi_str_mv 10.1017/jfm.2016.871
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01647829v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2016_871</cupid><sourcerecordid>1976030095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d5ce2ef253f20c6dad0240f49432d4158dde146cf24078f48ae60c2ce21db6293</originalsourceid><addsrcrecordid>eNptkF9LwzAUxYMoOKdvfoCCT4KtN2matL6NoW4w8EWfQ5Y_W0fXzKSdzE9vyob44NOFe3_ncM9B6BZDhgHzx43dZgQwy0qOz9AIU1alnNHiHI0ACEkxJnCJrkLYAOAcKj5CT_O2M76VTfIl9yaxTvWhblfJ8pDIZO18_e3aTjbNIXFB1U0ju-HaOd-Ha3RhZRPMzWmO0cfL8_t0li7eXufTySJVOaddqgtliLGkyC0BxbTUQChYWtGcaIqLUmsTP1U2bnlpaSkNA0WiCOslI1U-RvdH37VsxM7XW-kPwslazCYLMexiYspLUu1xZO-O7M67z96ETmxcP8QLAlecQQ5QFZF6OFLKuxC8sb-2GMTQpIhNiqFJEZuMeHbC5Xbpa70yf1z_E_wA5ZJ0aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976030095</pqid></control><display><type>article</type><title>Internal wave focusing by a horizontally oscillating torus</title><source>Cambridge core</source><creator>Ermanyuk, E. V. ; Shmakova, N. D. ; Flór, J.-B.</creator><creatorcontrib>Ermanyuk, E. V. ; Shmakova, N. D. ; Flór, J.-B.</creatorcontrib><description>This paper presents an experimental study on internal waves emitted by a horizontally oscillating torus in a linearly stratified fluid. Two internal wave cones are generated with the kinetic energy focused at the apices of the cones above and below the torus where the wave amplitude is maximal. Their motion is measured via tracking of distortions of horizontal fluorescein dye planes created prior to the experiments and illuminated by a vertical laser sheet. The distortion of the dye planes gives a direct access to the Lagrangian displacement of local wave amplitudes and slopes, and in particular, allows us to calculate a local Richardson number. In addition particle image velocimetry measurements are used. Maximum wave slopes are found in the focal region and close to the surface of the torus. As the amplitude of oscillations of the torus increases, wave profiles in the regions of maximum wave slopes evolve nonlinearly toward local overturning. A theoretical approximation based on the theory of Hurley &amp; Keady (J. Fluid Mech., vol. 351, 1997, pp. 119–138) is presented and shows, for small amplitudes of oscillation, a very reasonable agreement with the experimental data. For the focal region the internal wave amplitude is found to be overestimated by the theory. The wave breaking in the focal region is investigated as a function of the Keulegan–Carpenter number, $Ke=A/a$ , with $A$ the oscillation amplitude and $a$ the short radius of the torus. A linear wave regime is found for $Ke&lt;0.4$ , nonlinear effects start at $Ke\approx 0.6$ and breaking for $Ke&gt;0.8$ . For large forcing, the measured wave amplitude normalized with the oscillation amplitude decreases almost everywhere in the wave field, but increases locally in the focal region due to nonlinear effects. Due to geometric focusing the amplitude of the wave increases with $\sqrt{\unicode[STIX]{x1D716}}$ , with $\unicode[STIX]{x1D716}=b/a$ and $b$ is the mean radius of the torus. The relevance of wave focusing due to ocean topography is discussed.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2016.871</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Amplitude ; Amplitudes ; Approximation ; Banks (topography) ; Cones ; Dyes ; Energy ; Experiments ; Fluid mechanics ; Fluids ; Fluorescein ; Gravitational waves ; Internal waves ; Kinetic energy ; Laboratories ; Lasers ; Linear waves ; Mechanics ; Oceans ; Oscillations ; Particle image velocimetry ; Physics ; Planes ; Profiles ; Richardson number ; Slope ; Slopes ; Studies ; Theory ; Topography ; Topography (geology) ; Toruses ; Velocity measurement ; Wave amplitude ; Wave breaking ; Wave power</subject><ispartof>Journal of fluid mechanics, 2017-02, Vol.813, p.695-715</ispartof><rights>2017 Cambridge University Press</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d5ce2ef253f20c6dad0240f49432d4158dde146cf24078f48ae60c2ce21db6293</citedby><cites>FETCH-LOGICAL-c374t-d5ce2ef253f20c6dad0240f49432d4158dde146cf24078f48ae60c2ce21db6293</cites><orcidid>0000-0002-7114-2263 ; 0000-0001-6254-3084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112016008715/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01647829$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ermanyuk, E. V.</creatorcontrib><creatorcontrib>Shmakova, N. D.</creatorcontrib><creatorcontrib>Flór, J.-B.</creatorcontrib><title>Internal wave focusing by a horizontally oscillating torus</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>This paper presents an experimental study on internal waves emitted by a horizontally oscillating torus in a linearly stratified fluid. Two internal wave cones are generated with the kinetic energy focused at the apices of the cones above and below the torus where the wave amplitude is maximal. Their motion is measured via tracking of distortions of horizontal fluorescein dye planes created prior to the experiments and illuminated by a vertical laser sheet. The distortion of the dye planes gives a direct access to the Lagrangian displacement of local wave amplitudes and slopes, and in particular, allows us to calculate a local Richardson number. In addition particle image velocimetry measurements are used. Maximum wave slopes are found in the focal region and close to the surface of the torus. As the amplitude of oscillations of the torus increases, wave profiles in the regions of maximum wave slopes evolve nonlinearly toward local overturning. A theoretical approximation based on the theory of Hurley &amp; Keady (J. Fluid Mech., vol. 351, 1997, pp. 119–138) is presented and shows, for small amplitudes of oscillation, a very reasonable agreement with the experimental data. For the focal region the internal wave amplitude is found to be overestimated by the theory. The wave breaking in the focal region is investigated as a function of the Keulegan–Carpenter number, $Ke=A/a$ , with $A$ the oscillation amplitude and $a$ the short radius of the torus. A linear wave regime is found for $Ke&lt;0.4$ , nonlinear effects start at $Ke\approx 0.6$ and breaking for $Ke&gt;0.8$ . For large forcing, the measured wave amplitude normalized with the oscillation amplitude decreases almost everywhere in the wave field, but increases locally in the focal region due to nonlinear effects. Due to geometric focusing the amplitude of the wave increases with $\sqrt{\unicode[STIX]{x1D716}}$ , with $\unicode[STIX]{x1D716}=b/a$ and $b$ is the mean radius of the torus. The relevance of wave focusing due to ocean topography is discussed.</description><subject>Amplitude</subject><subject>Amplitudes</subject><subject>Approximation</subject><subject>Banks (topography)</subject><subject>Cones</subject><subject>Dyes</subject><subject>Energy</subject><subject>Experiments</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Fluorescein</subject><subject>Gravitational waves</subject><subject>Internal waves</subject><subject>Kinetic energy</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Linear waves</subject><subject>Mechanics</subject><subject>Oceans</subject><subject>Oscillations</subject><subject>Particle image velocimetry</subject><subject>Physics</subject><subject>Planes</subject><subject>Profiles</subject><subject>Richardson number</subject><subject>Slope</subject><subject>Slopes</subject><subject>Studies</subject><subject>Theory</subject><subject>Topography</subject><subject>Topography (geology)</subject><subject>Toruses</subject><subject>Velocity measurement</subject><subject>Wave amplitude</subject><subject>Wave breaking</subject><subject>Wave power</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkF9LwzAUxYMoOKdvfoCCT4KtN2matL6NoW4w8EWfQ5Y_W0fXzKSdzE9vyob44NOFe3_ncM9B6BZDhgHzx43dZgQwy0qOz9AIU1alnNHiHI0ACEkxJnCJrkLYAOAcKj5CT_O2M76VTfIl9yaxTvWhblfJ8pDIZO18_e3aTjbNIXFB1U0ju-HaOd-Ha3RhZRPMzWmO0cfL8_t0li7eXufTySJVOaddqgtliLGkyC0BxbTUQChYWtGcaIqLUmsTP1U2bnlpaSkNA0WiCOslI1U-RvdH37VsxM7XW-kPwslazCYLMexiYspLUu1xZO-O7M67z96ETmxcP8QLAlecQQ5QFZF6OFLKuxC8sb-2GMTQpIhNiqFJEZuMeHbC5Xbpa70yf1z_E_wA5ZJ0aw</recordid><startdate>20170225</startdate><enddate>20170225</enddate><creator>Ermanyuk, E. V.</creator><creator>Shmakova, N. D.</creator><creator>Flór, J.-B.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7114-2263</orcidid><orcidid>https://orcid.org/0000-0001-6254-3084</orcidid></search><sort><creationdate>20170225</creationdate><title>Internal wave focusing by a horizontally oscillating torus</title><author>Ermanyuk, E. V. ; Shmakova, N. D. ; Flór, J.-B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d5ce2ef253f20c6dad0240f49432d4158dde146cf24078f48ae60c2ce21db6293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amplitude</topic><topic>Amplitudes</topic><topic>Approximation</topic><topic>Banks (topography)</topic><topic>Cones</topic><topic>Dyes</topic><topic>Energy</topic><topic>Experiments</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Fluorescein</topic><topic>Gravitational waves</topic><topic>Internal waves</topic><topic>Kinetic energy</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Linear waves</topic><topic>Mechanics</topic><topic>Oceans</topic><topic>Oscillations</topic><topic>Particle image velocimetry</topic><topic>Physics</topic><topic>Planes</topic><topic>Profiles</topic><topic>Richardson number</topic><topic>Slope</topic><topic>Slopes</topic><topic>Studies</topic><topic>Theory</topic><topic>Topography</topic><topic>Topography (geology)</topic><topic>Toruses</topic><topic>Velocity measurement</topic><topic>Wave amplitude</topic><topic>Wave breaking</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ermanyuk, E. V.</creatorcontrib><creatorcontrib>Shmakova, N. D.</creatorcontrib><creatorcontrib>Flór, J.-B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ermanyuk, E. V.</au><au>Shmakova, N. D.</au><au>Flór, J.-B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal wave focusing by a horizontally oscillating torus</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-02-25</date><risdate>2017</risdate><volume>813</volume><spage>695</spage><epage>715</epage><pages>695-715</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>This paper presents an experimental study on internal waves emitted by a horizontally oscillating torus in a linearly stratified fluid. Two internal wave cones are generated with the kinetic energy focused at the apices of the cones above and below the torus where the wave amplitude is maximal. Their motion is measured via tracking of distortions of horizontal fluorescein dye planes created prior to the experiments and illuminated by a vertical laser sheet. The distortion of the dye planes gives a direct access to the Lagrangian displacement of local wave amplitudes and slopes, and in particular, allows us to calculate a local Richardson number. In addition particle image velocimetry measurements are used. Maximum wave slopes are found in the focal region and close to the surface of the torus. As the amplitude of oscillations of the torus increases, wave profiles in the regions of maximum wave slopes evolve nonlinearly toward local overturning. A theoretical approximation based on the theory of Hurley &amp; Keady (J. Fluid Mech., vol. 351, 1997, pp. 119–138) is presented and shows, for small amplitudes of oscillation, a very reasonable agreement with the experimental data. For the focal region the internal wave amplitude is found to be overestimated by the theory. The wave breaking in the focal region is investigated as a function of the Keulegan–Carpenter number, $Ke=A/a$ , with $A$ the oscillation amplitude and $a$ the short radius of the torus. A linear wave regime is found for $Ke&lt;0.4$ , nonlinear effects start at $Ke\approx 0.6$ and breaking for $Ke&gt;0.8$ . For large forcing, the measured wave amplitude normalized with the oscillation amplitude decreases almost everywhere in the wave field, but increases locally in the focal region due to nonlinear effects. Due to geometric focusing the amplitude of the wave increases with $\sqrt{\unicode[STIX]{x1D716}}$ , with $\unicode[STIX]{x1D716}=b/a$ and $b$ is the mean radius of the torus. The relevance of wave focusing due to ocean topography is discussed.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2016.871</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7114-2263</orcidid><orcidid>https://orcid.org/0000-0001-6254-3084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-02, Vol.813, p.695-715
issn 0022-1120
1469-7645
language eng
recordid cdi_hal_primary_oai_HAL_hal_01647829v1
source Cambridge core
subjects Amplitude
Amplitudes
Approximation
Banks (topography)
Cones
Dyes
Energy
Experiments
Fluid mechanics
Fluids
Fluorescein
Gravitational waves
Internal waves
Kinetic energy
Laboratories
Lasers
Linear waves
Mechanics
Oceans
Oscillations
Particle image velocimetry
Physics
Planes
Profiles
Richardson number
Slope
Slopes
Studies
Theory
Topography
Topography (geology)
Toruses
Velocity measurement
Wave amplitude
Wave breaking
Wave power
title Internal wave focusing by a horizontally oscillating torus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20wave%20focusing%20by%20a%20horizontally%20oscillating%20torus&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Ermanyuk,%20E.%20V.&rft.date=2017-02-25&rft.volume=813&rft.spage=695&rft.epage=715&rft.pages=695-715&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2016.871&rft_dat=%3Cproquest_hal_p%3E1976030095%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976030095&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2016_871&rfr_iscdi=true