Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation

Abstract The observed massive end of the galaxy stellar mass function is steeper than its predicted dark matter halo counterpart in the standard Λ cold dark matter paradigm. In this paper, we investigate the impact of active galactic nuclei (AGN) feedback on star formation in massive galaxies. We is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2017-11, Vol.472 (1), p.949-965
Hauptverfasser: Beckmann, R. S., Devriendt, J., Slyz, A., Peirani, S., Richardson, M. L. A., Dubois, Y., Pichon, C., Chisari, N. E., Kaviraj, S., Laigle, C., Volonteri, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 965
container_issue 1
container_start_page 949
container_title Monthly notices of the Royal Astronomical Society
container_volume 472
creator Beckmann, R. S.
Devriendt, J.
Slyz, A.
Peirani, S.
Richardson, M. L. A.
Dubois, Y.
Pichon, C.
Chisari, N. E.
Kaviraj, S.
Laigle, C.
Volonteri, M.
description Abstract The observed massive end of the galaxy stellar mass function is steeper than its predicted dark matter halo counterpart in the standard Λ cold dark matter paradigm. In this paper, we investigate the impact of active galactic nuclei (AGN) feedback on star formation in massive galaxies. We isolate the impact of AGN by comparing two simulations from the HORIZON suite, which are identical except that one also includes supermassive black holes (SMBHs) and related feedback models. This allows us to cross-identify individual galaxies between simulations and quantify the effect of AGN feedback on their properties, including stellar mass and gas outflows. We find that massive galaxies (M * ≥ 1011 M⊙) are quenched by AGN feedback to the extent that their stellar masses decrease by up to 80 per cent at z = 0. SMBHs affect their host halo through a combination of outflows that reduce their baryonic mass, particularly for galaxies in the mass range 109 M⊙ ≤ M * ≤ 1011 M⊙, and a disruption of central gas inflows, which limits in situ star formation. As a result, net gas inflows on to massive galaxies, M * ≥ 1011 M⊙, drop by up to 70 per cent. We measure a redshift evolution in the stellar mass ratio of twin galaxies with and without AGN feedback, with galaxies of a given stellar mass showing stronger signs of quenching earlier on. This evolution is driven by a progressive flattening of the M SMBH–M * relation with redshift, particularly for galaxies with M * ≤ 1010 M⊙. M SMBH/M * ratios decrease over time, as falling average gas densities in galaxies curb SMBH growth.
doi_str_mv 10.1093/mnras/stx1831
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01645493v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stx1831</oup_id><sourcerecordid>2120240684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-428096722ede991e8b2a70f503d3002bf245ab8f274a5dbe689aad6397171c983</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7p0XvAix7qXn40TbyNoZsw9KI3IaRt6jrbZibtcP71tm549fTg8eHLe1-ELgncElBsUjfehElov4hk5AiNCBNxRJUQx2gEwOJIJoScorMQ1gDAGRUj9DZzoS4zbLeu6trSNdgVOLS2qozHn51tslXZvON0h6fzJ1xYm6cm-7jDWdXZgAvvatyuLF44X367JhpQKOuuMkPWOTopTBXsxWGO0evD_ctsES2f54-z6TLKOEvaiFMJSiSU2twqRaxMqUmgiIHlDICmBeWxSWVBE27iPLVCKmNywVRCEpIpycboZp-7MpXe-LI2fqedKfViutTDDojgMVdsS3p7tbcb7_r_QqvXrvNNf56mhALlICTvVbRXmXcheFv8xRLQQ9n6t2x9KLv313vvus0_9AcdeYBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120240684</pqid></control><display><type>article</type><title>Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation</title><source>Oxford Journals Open Access Collection</source><creator>Beckmann, R. S. ; Devriendt, J. ; Slyz, A. ; Peirani, S. ; Richardson, M. L. A. ; Dubois, Y. ; Pichon, C. ; Chisari, N. E. ; Kaviraj, S. ; Laigle, C. ; Volonteri, M.</creator><creatorcontrib>Beckmann, R. S. ; Devriendt, J. ; Slyz, A. ; Peirani, S. ; Richardson, M. L. A. ; Dubois, Y. ; Pichon, C. ; Chisari, N. E. ; Kaviraj, S. ; Laigle, C. ; Volonteri, M.</creatorcontrib><description>Abstract The observed massive end of the galaxy stellar mass function is steeper than its predicted dark matter halo counterpart in the standard Λ cold dark matter paradigm. In this paper, we investigate the impact of active galactic nuclei (AGN) feedback on star formation in massive galaxies. We isolate the impact of AGN by comparing two simulations from the HORIZON suite, which are identical except that one also includes supermassive black holes (SMBHs) and related feedback models. This allows us to cross-identify individual galaxies between simulations and quantify the effect of AGN feedback on their properties, including stellar mass and gas outflows. We find that massive galaxies (M * ≥ 1011 M⊙) are quenched by AGN feedback to the extent that their stellar masses decrease by up to 80 per cent at z = 0. SMBHs affect their host halo through a combination of outflows that reduce their baryonic mass, particularly for galaxies in the mass range 109 M⊙ ≤ M * ≤ 1011 M⊙, and a disruption of central gas inflows, which limits in situ star formation. As a result, net gas inflows on to massive galaxies, M * ≥ 1011 M⊙, drop by up to 70 per cent. We measure a redshift evolution in the stellar mass ratio of twin galaxies with and without AGN feedback, with galaxies of a given stellar mass showing stronger signs of quenching earlier on. This evolution is driven by a progressive flattening of the M SMBH–M * relation with redshift, particularly for galaxies with M * ≤ 1010 M⊙. M SMBH/M * ratios decrease over time, as falling average gas densities in galaxies curb SMBH growth.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stx1831</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Active galactic nuclei ; Astronomical models ; Astrophysics ; Cold dark matter ; Computer simulation ; Disruption ; Feedback ; Galactic evolution ; Galaxies ; Physics ; Quenching ; Red shift ; Star &amp; galaxy formation ; Star formation ; Stellar evolution ; Stellar mass ; Supermassive black holes</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2017-11, Vol.472 (1), p.949-965</ispartof><rights>2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2017</rights><rights>2017 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-428096722ede991e8b2a70f503d3002bf245ab8f274a5dbe689aad6397171c983</citedby><orcidid>0000-0002-2850-0192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stx1831$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://hal.science/hal-01645493$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckmann, R. S.</creatorcontrib><creatorcontrib>Devriendt, J.</creatorcontrib><creatorcontrib>Slyz, A.</creatorcontrib><creatorcontrib>Peirani, S.</creatorcontrib><creatorcontrib>Richardson, M. L. A.</creatorcontrib><creatorcontrib>Dubois, Y.</creatorcontrib><creatorcontrib>Pichon, C.</creatorcontrib><creatorcontrib>Chisari, N. E.</creatorcontrib><creatorcontrib>Kaviraj, S.</creatorcontrib><creatorcontrib>Laigle, C.</creatorcontrib><creatorcontrib>Volonteri, M.</creatorcontrib><title>Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation</title><title>Monthly notices of the Royal Astronomical Society</title><description>Abstract The observed massive end of the galaxy stellar mass function is steeper than its predicted dark matter halo counterpart in the standard Λ cold dark matter paradigm. In this paper, we investigate the impact of active galactic nuclei (AGN) feedback on star formation in massive galaxies. We isolate the impact of AGN by comparing two simulations from the HORIZON suite, which are identical except that one also includes supermassive black holes (SMBHs) and related feedback models. This allows us to cross-identify individual galaxies between simulations and quantify the effect of AGN feedback on their properties, including stellar mass and gas outflows. We find that massive galaxies (M * ≥ 1011 M⊙) are quenched by AGN feedback to the extent that their stellar masses decrease by up to 80 per cent at z = 0. SMBHs affect their host halo through a combination of outflows that reduce their baryonic mass, particularly for galaxies in the mass range 109 M⊙ ≤ M * ≤ 1011 M⊙, and a disruption of central gas inflows, which limits in situ star formation. As a result, net gas inflows on to massive galaxies, M * ≥ 1011 M⊙, drop by up to 70 per cent. We measure a redshift evolution in the stellar mass ratio of twin galaxies with and without AGN feedback, with galaxies of a given stellar mass showing stronger signs of quenching earlier on. This evolution is driven by a progressive flattening of the M SMBH–M * relation with redshift, particularly for galaxies with M * ≤ 1010 M⊙. M SMBH/M * ratios decrease over time, as falling average gas densities in galaxies curb SMBH growth.</description><subject>Active galactic nuclei</subject><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Cold dark matter</subject><subject>Computer simulation</subject><subject>Disruption</subject><subject>Feedback</subject><subject>Galactic evolution</subject><subject>Galaxies</subject><subject>Physics</subject><subject>Quenching</subject><subject>Red shift</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><subject>Stellar evolution</subject><subject>Stellar mass</subject><subject>Supermassive black holes</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0M9LwzAUB_AgCs7p0XvAix7qXn40TbyNoZsw9KI3IaRt6jrbZibtcP71tm549fTg8eHLe1-ELgncElBsUjfehElov4hk5AiNCBNxRJUQx2gEwOJIJoScorMQ1gDAGRUj9DZzoS4zbLeu6trSNdgVOLS2qozHn51tslXZvON0h6fzJ1xYm6cm-7jDWdXZgAvvatyuLF44X367JhpQKOuuMkPWOTopTBXsxWGO0evD_ctsES2f54-z6TLKOEvaiFMJSiSU2twqRaxMqUmgiIHlDICmBeWxSWVBE27iPLVCKmNywVRCEpIpycboZp-7MpXe-LI2fqedKfViutTDDojgMVdsS3p7tbcb7_r_QqvXrvNNf56mhALlICTvVbRXmXcheFv8xRLQQ9n6t2x9KLv313vvus0_9AcdeYBw</recordid><startdate>20171121</startdate><enddate>20171121</enddate><creator>Beckmann, R. S.</creator><creator>Devriendt, J.</creator><creator>Slyz, A.</creator><creator>Peirani, S.</creator><creator>Richardson, M. L. A.</creator><creator>Dubois, Y.</creator><creator>Pichon, C.</creator><creator>Chisari, N. E.</creator><creator>Kaviraj, S.</creator><creator>Laigle, C.</creator><creator>Volonteri, M.</creator><general>Oxford University Press</general><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2850-0192</orcidid></search><sort><creationdate>20171121</creationdate><title>Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation</title><author>Beckmann, R. S. ; Devriendt, J. ; Slyz, A. ; Peirani, S. ; Richardson, M. L. A. ; Dubois, Y. ; Pichon, C. ; Chisari, N. E. ; Kaviraj, S. ; Laigle, C. ; Volonteri, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-428096722ede991e8b2a70f503d3002bf245ab8f274a5dbe689aad6397171c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active galactic nuclei</topic><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Cold dark matter</topic><topic>Computer simulation</topic><topic>Disruption</topic><topic>Feedback</topic><topic>Galactic evolution</topic><topic>Galaxies</topic><topic>Physics</topic><topic>Quenching</topic><topic>Red shift</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><topic>Stellar evolution</topic><topic>Stellar mass</topic><topic>Supermassive black holes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckmann, R. S.</creatorcontrib><creatorcontrib>Devriendt, J.</creatorcontrib><creatorcontrib>Slyz, A.</creatorcontrib><creatorcontrib>Peirani, S.</creatorcontrib><creatorcontrib>Richardson, M. L. A.</creatorcontrib><creatorcontrib>Dubois, Y.</creatorcontrib><creatorcontrib>Pichon, C.</creatorcontrib><creatorcontrib>Chisari, N. E.</creatorcontrib><creatorcontrib>Kaviraj, S.</creatorcontrib><creatorcontrib>Laigle, C.</creatorcontrib><creatorcontrib>Volonteri, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Beckmann, R. S.</au><au>Devriendt, J.</au><au>Slyz, A.</au><au>Peirani, S.</au><au>Richardson, M. L. A.</au><au>Dubois, Y.</au><au>Pichon, C.</au><au>Chisari, N. E.</au><au>Kaviraj, S.</au><au>Laigle, C.</au><au>Volonteri, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2017-11-21</date><risdate>2017</risdate><volume>472</volume><issue>1</issue><spage>949</spage><epage>965</epage><pages>949-965</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract The observed massive end of the galaxy stellar mass function is steeper than its predicted dark matter halo counterpart in the standard Λ cold dark matter paradigm. In this paper, we investigate the impact of active galactic nuclei (AGN) feedback on star formation in massive galaxies. We isolate the impact of AGN by comparing two simulations from the HORIZON suite, which are identical except that one also includes supermassive black holes (SMBHs) and related feedback models. This allows us to cross-identify individual galaxies between simulations and quantify the effect of AGN feedback on their properties, including stellar mass and gas outflows. We find that massive galaxies (M * ≥ 1011 M⊙) are quenched by AGN feedback to the extent that their stellar masses decrease by up to 80 per cent at z = 0. SMBHs affect their host halo through a combination of outflows that reduce their baryonic mass, particularly for galaxies in the mass range 109 M⊙ ≤ M * ≤ 1011 M⊙, and a disruption of central gas inflows, which limits in situ star formation. As a result, net gas inflows on to massive galaxies, M * ≥ 1011 M⊙, drop by up to 70 per cent. We measure a redshift evolution in the stellar mass ratio of twin galaxies with and without AGN feedback, with galaxies of a given stellar mass showing stronger signs of quenching earlier on. This evolution is driven by a progressive flattening of the M SMBH–M * relation with redshift, particularly for galaxies with M * ≤ 1010 M⊙. M SMBH/M * ratios decrease over time, as falling average gas densities in galaxies curb SMBH growth.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stx1831</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2850-0192</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2017-11, Vol.472 (1), p.949-965
issn 0035-8711
1365-2966
language eng
recordid cdi_hal_primary_oai_HAL_hal_01645493v1
source Oxford Journals Open Access Collection
subjects Active galactic nuclei
Astronomical models
Astrophysics
Cold dark matter
Computer simulation
Disruption
Feedback
Galactic evolution
Galaxies
Physics
Quenching
Red shift
Star & galaxy formation
Star formation
Stellar evolution
Stellar mass
Supermassive black holes
title Cosmic evolution of stellar quenching by AGN feedback: clues from the Horizon-AGN simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmic%20evolution%20of%20stellar%20quenching%20by%20AGN%20feedback:%20clues%20from%20the%20Horizon-AGN%20simulation&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Beckmann,%20R.%20S.&rft.date=2017-11-21&rft.volume=472&rft.issue=1&rft.spage=949&rft.epage=965&rft.pages=949-965&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stx1831&rft_dat=%3Cproquest_TOX%3E2120240684%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120240684&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stx1831&rfr_iscdi=true