Dirichlet Spectrum of the Fichera Layer
We investigate the spectrum of the three-dimensional Dirichlet Laplacian in a prototypal infinite polyhedral layer, that is formed by three perpendicular quarter-plane walls of constant width joining each other. Alternatively, this domain can be viewed as an octant from which another “parallel” octa...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2018-10, Vol.90 (5), p.1-41, Article 60 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Integral equations and operator theory |
container_volume | 90 |
creator | Dauge, Monique Lafranche, Yvon Ourmières-Bonafos, Thomas |
description | We investigate the spectrum of the three-dimensional Dirichlet Laplacian in a prototypal infinite polyhedral layer, that is formed by three perpendicular quarter-plane walls of constant width joining each other. Alternatively, this domain can be viewed as an octant from which another “parallel” octant is removed. It contains six edges (three convex and three non-convex) and two corners (one convex and one non-convex). It is a canonical example of non-smooth conical layer. We name it after Fichera because near its non-convex corner, it coincides with the famous Fichera cube that illustrates the interaction between edge and corner singularities. This domain could also be called an octant layer. We show that the essential spectrum of the Laplacian on such a domain is a half-line and we characterize its minimum as the first eigenvalue of the two-dimensional Laplacian on a broken guide. By a Born–Oppenheimer type strategy, we also prove that its discrete spectrum is finite and that a lower bound is given by the ground state of a special Sturm–Liouville operator. By finite element computations taking singularities into account, we exhibit exactly one eigenvalue under the essential spectrum threshold leaving a relative gap of 3%. We extend these results to a variant of the Fichera layer with rounded edges (for which we find a very small relative gap of 0.5%), and to a three-dimensional cross where the three walls are full thickened planes. |
doi_str_mv | 10.1007/s00020-018-2486-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01645083v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099459063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-6c5d49bbdc1a050745172d27b5b0609fbe4f25f19cfd3f0a1a5f5616027695b3</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd_gLeCB_EQ_ZLm53FM54SCB3fwFtI2cR3bOpNW6H9vRkVPnj54ed6HjxehawL3BEA-RACggIEoTJkSeDhBE8JSorTSp2gCuVRYUHg_RxcxbhJMJRUTdPvYhKZab12XvR1c1YV-l7U-69YuW6TcBZsVdnDhEp15u43u6udO0WrxtJovcfH6_DKfFbjKOXRYVLxmuizriljgIBknktZUlrwEAdqXjnnKPdGVr3MPlljuuSACqBSal_kU3Y3atd2aQ2h2NgymtY1ZzgpzzIAIxkHlXzSxNyN7CO1n72JnNm0f9uk7Q0FrxjWIPFFkpKrQxhic_9USMMfpzDhdMitznM4MqUPHTkzs_sOFP_P_pW8wam6F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099459063</pqid></control><display><type>article</type><title>Dirichlet Spectrum of the Fichera Layer</title><source>SpringerLink Journals</source><creator>Dauge, Monique ; Lafranche, Yvon ; Ourmières-Bonafos, Thomas</creator><creatorcontrib>Dauge, Monique ; Lafranche, Yvon ; Ourmières-Bonafos, Thomas</creatorcontrib><description>We investigate the spectrum of the three-dimensional Dirichlet Laplacian in a prototypal infinite polyhedral layer, that is formed by three perpendicular quarter-plane walls of constant width joining each other. Alternatively, this domain can be viewed as an octant from which another “parallel” octant is removed. It contains six edges (three convex and three non-convex) and two corners (one convex and one non-convex). It is a canonical example of non-smooth conical layer. We name it after Fichera because near its non-convex corner, it coincides with the famous Fichera cube that illustrates the interaction between edge and corner singularities. This domain could also be called an octant layer. We show that the essential spectrum of the Laplacian on such a domain is a half-line and we characterize its minimum as the first eigenvalue of the two-dimensional Laplacian on a broken guide. By a Born–Oppenheimer type strategy, we also prove that its discrete spectrum is finite and that a lower bound is given by the ground state of a special Sturm–Liouville operator. By finite element computations taking singularities into account, we exhibit exactly one eigenvalue under the essential spectrum threshold leaving a relative gap of 3%. We extend these results to a variant of the Fichera layer with rounded edges (for which we find a very small relative gap of 0.5%), and to a three-dimensional cross where the three walls are full thickened planes.</description><identifier>ISSN: 0378-620X</identifier><identifier>EISSN: 1420-8989</identifier><identifier>DOI: 10.1007/s00020-018-2486-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Analysis of PDEs ; Dirichlet problem ; Eigenvalues ; Finite element method ; Lower bounds ; Mathematical Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Singularity (mathematics)</subject><ispartof>Integral equations and operator theory, 2018-10, Vol.90 (5), p.1-41, Article 60</ispartof><rights>Springer Nature Switzerland AG 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-6c5d49bbdc1a050745172d27b5b0609fbe4f25f19cfd3f0a1a5f5616027695b3</citedby><cites>FETCH-LOGICAL-c350t-6c5d49bbdc1a050745172d27b5b0609fbe4f25f19cfd3f0a1a5f5616027695b3</cites><orcidid>0000-0003-0846-9009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00020-018-2486-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00020-018-2486-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01645083$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dauge, Monique</creatorcontrib><creatorcontrib>Lafranche, Yvon</creatorcontrib><creatorcontrib>Ourmières-Bonafos, Thomas</creatorcontrib><title>Dirichlet Spectrum of the Fichera Layer</title><title>Integral equations and operator theory</title><addtitle>Integr. Equ. Oper. Theory</addtitle><description>We investigate the spectrum of the three-dimensional Dirichlet Laplacian in a prototypal infinite polyhedral layer, that is formed by three perpendicular quarter-plane walls of constant width joining each other. Alternatively, this domain can be viewed as an octant from which another “parallel” octant is removed. It contains six edges (three convex and three non-convex) and two corners (one convex and one non-convex). It is a canonical example of non-smooth conical layer. We name it after Fichera because near its non-convex corner, it coincides with the famous Fichera cube that illustrates the interaction between edge and corner singularities. This domain could also be called an octant layer. We show that the essential spectrum of the Laplacian on such a domain is a half-line and we characterize its minimum as the first eigenvalue of the two-dimensional Laplacian on a broken guide. By a Born–Oppenheimer type strategy, we also prove that its discrete spectrum is finite and that a lower bound is given by the ground state of a special Sturm–Liouville operator. By finite element computations taking singularities into account, we exhibit exactly one eigenvalue under the essential spectrum threshold leaving a relative gap of 3%. We extend these results to a variant of the Fichera layer with rounded edges (for which we find a very small relative gap of 0.5%), and to a three-dimensional cross where the three walls are full thickened planes.</description><subject>Analysis</subject><subject>Analysis of PDEs</subject><subject>Dirichlet problem</subject><subject>Eigenvalues</subject><subject>Finite element method</subject><subject>Lower bounds</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Singularity (mathematics)</subject><issn>0378-620X</issn><issn>1420-8989</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKd_gLeCB_EQ_ZLm53FM54SCB3fwFtI2cR3bOpNW6H9vRkVPnj54ed6HjxehawL3BEA-RACggIEoTJkSeDhBE8JSorTSp2gCuVRYUHg_RxcxbhJMJRUTdPvYhKZab12XvR1c1YV-l7U-69YuW6TcBZsVdnDhEp15u43u6udO0WrxtJovcfH6_DKfFbjKOXRYVLxmuizriljgIBknktZUlrwEAdqXjnnKPdGVr3MPlljuuSACqBSal_kU3Y3atd2aQ2h2NgymtY1ZzgpzzIAIxkHlXzSxNyN7CO1n72JnNm0f9uk7Q0FrxjWIPFFkpKrQxhic_9USMMfpzDhdMitznM4MqUPHTkzs_sOFP_P_pW8wam6F</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Dauge, Monique</creator><creator>Lafranche, Yvon</creator><creator>Ourmières-Bonafos, Thomas</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0846-9009</orcidid></search><sort><creationdate>20181001</creationdate><title>Dirichlet Spectrum of the Fichera Layer</title><author>Dauge, Monique ; Lafranche, Yvon ; Ourmières-Bonafos, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-6c5d49bbdc1a050745172d27b5b0609fbe4f25f19cfd3f0a1a5f5616027695b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Analysis of PDEs</topic><topic>Dirichlet problem</topic><topic>Eigenvalues</topic><topic>Finite element method</topic><topic>Lower bounds</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Singularity (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dauge, Monique</creatorcontrib><creatorcontrib>Lafranche, Yvon</creatorcontrib><creatorcontrib>Ourmières-Bonafos, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Integral equations and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dauge, Monique</au><au>Lafranche, Yvon</au><au>Ourmières-Bonafos, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dirichlet Spectrum of the Fichera Layer</atitle><jtitle>Integral equations and operator theory</jtitle><stitle>Integr. Equ. Oper. Theory</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>90</volume><issue>5</issue><spage>1</spage><epage>41</epage><pages>1-41</pages><artnum>60</artnum><issn>0378-620X</issn><eissn>1420-8989</eissn><abstract>We investigate the spectrum of the three-dimensional Dirichlet Laplacian in a prototypal infinite polyhedral layer, that is formed by three perpendicular quarter-plane walls of constant width joining each other. Alternatively, this domain can be viewed as an octant from which another “parallel” octant is removed. It contains six edges (three convex and three non-convex) and two corners (one convex and one non-convex). It is a canonical example of non-smooth conical layer. We name it after Fichera because near its non-convex corner, it coincides with the famous Fichera cube that illustrates the interaction between edge and corner singularities. This domain could also be called an octant layer. We show that the essential spectrum of the Laplacian on such a domain is a half-line and we characterize its minimum as the first eigenvalue of the two-dimensional Laplacian on a broken guide. By a Born–Oppenheimer type strategy, we also prove that its discrete spectrum is finite and that a lower bound is given by the ground state of a special Sturm–Liouville operator. By finite element computations taking singularities into account, we exhibit exactly one eigenvalue under the essential spectrum threshold leaving a relative gap of 3%. We extend these results to a variant of the Fichera layer with rounded edges (for which we find a very small relative gap of 0.5%), and to a three-dimensional cross where the three walls are full thickened planes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00020-018-2486-y</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0003-0846-9009</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-620X |
ispartof | Integral equations and operator theory, 2018-10, Vol.90 (5), p.1-41, Article 60 |
issn | 0378-620X 1420-8989 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01645083v2 |
source | SpringerLink Journals |
subjects | Analysis Analysis of PDEs Dirichlet problem Eigenvalues Finite element method Lower bounds Mathematical Physics Mathematics Mathematics and Statistics Numerical Analysis Singularity (mathematics) |
title | Dirichlet Spectrum of the Fichera Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dirichlet%20Spectrum%20of%20the%20Fichera%20Layer&rft.jtitle=Integral%20equations%20and%20operator%20theory&rft.au=Dauge,%20Monique&rft.date=2018-10-01&rft.volume=90&rft.issue=5&rft.spage=1&rft.epage=41&rft.pages=1-41&rft.artnum=60&rft.issn=0378-620X&rft.eissn=1420-8989&rft_id=info:doi/10.1007/s00020-018-2486-y&rft_dat=%3Cproquest_hal_p%3E2099459063%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099459063&rft_id=info:pmid/&rfr_iscdi=true |