Experimental and theoretical study of the collisional quenching of S( 1 D) by Ar

We present an experimental and theoretical investigation of the deactivation rate of S( D) atoms by collisions with argon. Kinetic measurements were performed at temperatures from 5.8 K to 298 K in cold uniform supersonic flows using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2017, Vol.19 (42), p.28555-28571
Hauptverfasser: Lara, Manuel, Berteloite, C, Paniagua, M, Dayou, F, Le Picard, S D, Launay, J-M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28571
container_issue 42
container_start_page 28555
container_title Physical chemistry chemical physics : PCCP
container_volume 19
creator Lara, Manuel
Berteloite, C
Paniagua, M
Dayou, F
Le Picard, S D
Launay, J-M
description We present an experimental and theoretical investigation of the deactivation rate of S( D) atoms by collisions with argon. Kinetic measurements were performed at temperatures from 5.8 K to 298 K in cold uniform supersonic flows using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) apparatus. In order to simulate them, ab initio electronic structure calculations using internally contracted MRCI methodology were performed to describe the interaction. Starting from them, close-coupling calculations were carried out to determine collisional quenching probabilities for the transition S( D) → S( P) in the energy range 1-3000 K (1 K ≈ 0.7 cm ), sufficient to calculate thermal rate coefficients up to 300 K. Stückelberg-like oscillations in the quenching probabilities as a function of the energy are found and interpreted using a semiclassical model. Differences between the temperature dependence of the experimental and theoretical rate coefficients are detected at low temperatures. They are discussed in the light of a study of the high sensitivity of the theoretical results to the potential curves, due to the interference mechanisms which underlie the process.
doi_str_mv 10.1039/c7cp05279k
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01638857v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1955072429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-d270526777a14a596728a7b3e1225e68e22ba44c342894f07ad1f49d8aedd9bd3</originalsourceid><addsrcrecordid>eNo9kF1PwjAYhRujEURv_AGml2Ay7dfW9ZJMFCOJJOp107WdTMeK62bk39sJcvV-PTk57wHgEqMbjKi41VxvUEy4-DwCQ8wSGgmUsuNDz5MBOPP-AyGEY0xPwYAIlFDB8BAsZz8b25RrW7eqgqo2sF1Z19i21GH2bWe20BX9EmpXVaUvXR0OX52t9aqs3_vjyxhieDeB-RZOm3NwUqjK24t9HYG3-9lrNo8Wzw-P2XQRaUpwGxnCg-WEc64wU7FIOEkVz6nFhMQ2SS0huWJMU0ZSwQrElcEFEyZV1hiRGzoCk53uSlVyEz5QzVY6Vcr5dCH7HcIJTdOYf-PAjnfspnHBuW_luvTaVpWqreu8xCKOESeMiIBe71DdOO8bWxy0MZJ92jLj2fIv7acAX-11u3xtzQH9j5f-AvLkd3E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955072429</pqid></control><display><type>article</type><title>Experimental and theoretical study of the collisional quenching of S( 1 D) by Ar</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Lara, Manuel ; Berteloite, C ; Paniagua, M ; Dayou, F ; Le Picard, S D ; Launay, J-M</creator><creatorcontrib>Lara, Manuel ; Berteloite, C ; Paniagua, M ; Dayou, F ; Le Picard, S D ; Launay, J-M</creatorcontrib><description>We present an experimental and theoretical investigation of the deactivation rate of S( D) atoms by collisions with argon. Kinetic measurements were performed at temperatures from 5.8 K to 298 K in cold uniform supersonic flows using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) apparatus. In order to simulate them, ab initio electronic structure calculations using internally contracted MRCI methodology were performed to describe the interaction. Starting from them, close-coupling calculations were carried out to determine collisional quenching probabilities for the transition S( D) → S( P) in the energy range 1-3000 K (1 K ≈ 0.7 cm ), sufficient to calculate thermal rate coefficients up to 300 K. Stückelberg-like oscillations in the quenching probabilities as a function of the energy are found and interpreted using a semiclassical model. Differences between the temperature dependence of the experimental and theoretical rate coefficients are detected at low temperatures. They are discussed in the light of a study of the high sensitivity of the theoretical results to the potential curves, due to the interference mechanisms which underlie the process.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c7cp05279k</identifier><identifier>PMID: 29063941</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Physics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2017, Vol.19 (42), p.28555-28571</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-d270526777a14a596728a7b3e1225e68e22ba44c342894f07ad1f49d8aedd9bd3</citedby><cites>FETCH-LOGICAL-c321t-d270526777a14a596728a7b3e1225e68e22ba44c342894f07ad1f49d8aedd9bd3</cites><orcidid>0000-0002-7879-6913 ; 0000-0002-3753-4431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29063941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-01638857$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lara, Manuel</creatorcontrib><creatorcontrib>Berteloite, C</creatorcontrib><creatorcontrib>Paniagua, M</creatorcontrib><creatorcontrib>Dayou, F</creatorcontrib><creatorcontrib>Le Picard, S D</creatorcontrib><creatorcontrib>Launay, J-M</creatorcontrib><title>Experimental and theoretical study of the collisional quenching of S( 1 D) by Ar</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We present an experimental and theoretical investigation of the deactivation rate of S( D) atoms by collisions with argon. Kinetic measurements were performed at temperatures from 5.8 K to 298 K in cold uniform supersonic flows using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) apparatus. In order to simulate them, ab initio electronic structure calculations using internally contracted MRCI methodology were performed to describe the interaction. Starting from them, close-coupling calculations were carried out to determine collisional quenching probabilities for the transition S( D) → S( P) in the energy range 1-3000 K (1 K ≈ 0.7 cm ), sufficient to calculate thermal rate coefficients up to 300 K. Stückelberg-like oscillations in the quenching probabilities as a function of the energy are found and interpreted using a semiclassical model. Differences between the temperature dependence of the experimental and theoretical rate coefficients are detected at low temperatures. They are discussed in the light of a study of the high sensitivity of the theoretical results to the potential curves, due to the interference mechanisms which underlie the process.</description><subject>Physics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kF1PwjAYhRujEURv_AGml2Ay7dfW9ZJMFCOJJOp107WdTMeK62bk39sJcvV-PTk57wHgEqMbjKi41VxvUEy4-DwCQ8wSGgmUsuNDz5MBOPP-AyGEY0xPwYAIlFDB8BAsZz8b25RrW7eqgqo2sF1Z19i21GH2bWe20BX9EmpXVaUvXR0OX52t9aqs3_vjyxhieDeB-RZOm3NwUqjK24t9HYG3-9lrNo8Wzw-P2XQRaUpwGxnCg-WEc64wU7FIOEkVz6nFhMQ2SS0huWJMU0ZSwQrElcEFEyZV1hiRGzoCk53uSlVyEz5QzVY6Vcr5dCH7HcIJTdOYf-PAjnfspnHBuW_luvTaVpWqreu8xCKOESeMiIBe71DdOO8bWxy0MZJ92jLj2fIv7acAX-11u3xtzQH9j5f-AvLkd3E</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Lara, Manuel</creator><creator>Berteloite, C</creator><creator>Paniagua, M</creator><creator>Dayou, F</creator><creator>Le Picard, S D</creator><creator>Launay, J-M</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7879-6913</orcidid><orcidid>https://orcid.org/0000-0002-3753-4431</orcidid></search><sort><creationdate>2017</creationdate><title>Experimental and theoretical study of the collisional quenching of S( 1 D) by Ar</title><author>Lara, Manuel ; Berteloite, C ; Paniagua, M ; Dayou, F ; Le Picard, S D ; Launay, J-M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-d270526777a14a596728a7b3e1225e68e22ba44c342894f07ad1f49d8aedd9bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lara, Manuel</creatorcontrib><creatorcontrib>Berteloite, C</creatorcontrib><creatorcontrib>Paniagua, M</creatorcontrib><creatorcontrib>Dayou, F</creatorcontrib><creatorcontrib>Le Picard, S D</creatorcontrib><creatorcontrib>Launay, J-M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lara, Manuel</au><au>Berteloite, C</au><au>Paniagua, M</au><au>Dayou, F</au><au>Le Picard, S D</au><au>Launay, J-M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and theoretical study of the collisional quenching of S( 1 D) by Ar</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2017</date><risdate>2017</risdate><volume>19</volume><issue>42</issue><spage>28555</spage><epage>28571</epage><pages>28555-28571</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We present an experimental and theoretical investigation of the deactivation rate of S( D) atoms by collisions with argon. Kinetic measurements were performed at temperatures from 5.8 K to 298 K in cold uniform supersonic flows using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) apparatus. In order to simulate them, ab initio electronic structure calculations using internally contracted MRCI methodology were performed to describe the interaction. Starting from them, close-coupling calculations were carried out to determine collisional quenching probabilities for the transition S( D) → S( P) in the energy range 1-3000 K (1 K ≈ 0.7 cm ), sufficient to calculate thermal rate coefficients up to 300 K. Stückelberg-like oscillations in the quenching probabilities as a function of the energy are found and interpreted using a semiclassical model. Differences between the temperature dependence of the experimental and theoretical rate coefficients are detected at low temperatures. They are discussed in the light of a study of the high sensitivity of the theoretical results to the potential curves, due to the interference mechanisms which underlie the process.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29063941</pmid><doi>10.1039/c7cp05279k</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7879-6913</orcidid><orcidid>https://orcid.org/0000-0002-3753-4431</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2017, Vol.19 (42), p.28555-28571
issn 1463-9076
1463-9084
language eng
recordid cdi_hal_primary_oai_HAL_hal_01638857v1
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Physics
title Experimental and theoretical study of the collisional quenching of S( 1 D) by Ar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20theoretical%20study%20of%20the%20collisional%20quenching%20of%20S(%201%20D)%20by%20Ar&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Lara,%20Manuel&rft.date=2017&rft.volume=19&rft.issue=42&rft.spage=28555&rft.epage=28571&rft.pages=28555-28571&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c7cp05279k&rft_dat=%3Cproquest_hal_p%3E1955072429%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1955072429&rft_id=info:pmid/29063941&rfr_iscdi=true