DC programming techniques for solving a class of nonlinear bilevel programs

We propose a method for finding a global solution of a class of nonlinear bilevel programs, in which the objective function in the first level is a DC function, and the second level consists of finding a Karush-Kuhn-Tucker point of a quadratic programming problem. This method is a combination of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2009-07, Vol.44 (3), p.313-337
Hauptverfasser: Hoai An, Le Thi, Tao, Pham Dinh, Nguyen Canh, Nam, Van Thoai, Nguyen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 3
container_start_page 313
container_title Journal of global optimization
container_volume 44
creator Hoai An, Le Thi
Tao, Pham Dinh
Nguyen Canh, Nam
Van Thoai, Nguyen
description We propose a method for finding a global solution of a class of nonlinear bilevel programs, in which the objective function in the first level is a DC function, and the second level consists of finding a Karush-Kuhn-Tucker point of a quadratic programming problem. This method is a combination of the local algorithm DCA in DC programming with a branch and bound scheme well known in discrete and global optimization. Computational results on a class of quadratic bilevel programs are reported.
doi_str_mv 10.1007/s10898-008-9325-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01636748v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1749073431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-443d9be05cd2622a395ce3cca560fd5835310e43d9daa964129d6b767bb6d2cd3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwFvw5iH6kmySzbHUPxULXvQcstlsuyXd1KQW_PbusipePD0YfjPMG4QuKdxQAHWbKZS6JAAl0ZwJoo7QhArFCdNUHqMJ6F4UAPQUneW8AQBdCjZBz3dzvEtxlex223YrvPdu3bXvHz7jJiacYzgMssUu2JxxbHAXu9B23iZctcEffPjx53N00tiQ_cX3naK3h_vX-YIsXx6f5rMlcbzQe1IUvNaVB-FqJhmzXAvnuXNWSGhqUXLBKfgBqq3VsqBM17JSUlWVrJmr-RRdj7lrG8wutVubPk20rVnMlmbQgEouVVEeaM9ejWxfcvhqbzbxI3V9PUN1IZXSUvUQHSGXYs7JN7-pFMwwrxnnNf28ZpjXDB42enLPdiuf_gT_a_oCurx8dg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194677967</pqid></control><display><type>article</type><title>DC programming techniques for solving a class of nonlinear bilevel programs</title><source>SpringerLink Journals</source><creator>Hoai An, Le Thi ; Tao, Pham Dinh ; Nguyen Canh, Nam ; Van Thoai, Nguyen</creator><creatorcontrib>Hoai An, Le Thi ; Tao, Pham Dinh ; Nguyen Canh, Nam ; Van Thoai, Nguyen</creatorcontrib><description>We propose a method for finding a global solution of a class of nonlinear bilevel programs, in which the objective function in the first level is a DC function, and the second level consists of finding a Karush-Kuhn-Tucker point of a quadratic programming problem. This method is a combination of the local algorithm DCA in DC programming with a branch and bound scheme well known in discrete and global optimization. Computational results on a class of quadratic bilevel programs are reported.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-008-9325-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Branch &amp; bound algorithms ; Computer Science ; Convex analysis ; Laboratories ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Real Functions ; Studies</subject><ispartof>Journal of global optimization, 2009-07, Vol.44 (3), p.313-337</ispartof><rights>Springer Science+Business Media, LLC. 2008</rights><rights>Springer Science+Business Media, LLC. 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-443d9be05cd2622a395ce3cca560fd5835310e43d9daa964129d6b767bb6d2cd3</citedby><cites>FETCH-LOGICAL-c349t-443d9be05cd2622a395ce3cca560fd5835310e43d9daa964129d6b767bb6d2cd3</cites><orcidid>0000-0002-2239-2100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-008-9325-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-008-9325-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01636748$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoai An, Le Thi</creatorcontrib><creatorcontrib>Tao, Pham Dinh</creatorcontrib><creatorcontrib>Nguyen Canh, Nam</creatorcontrib><creatorcontrib>Van Thoai, Nguyen</creatorcontrib><title>DC programming techniques for solving a class of nonlinear bilevel programs</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>We propose a method for finding a global solution of a class of nonlinear bilevel programs, in which the objective function in the first level is a DC function, and the second level consists of finding a Karush-Kuhn-Tucker point of a quadratic programming problem. This method is a combination of the local algorithm DCA in DC programming with a branch and bound scheme well known in discrete and global optimization. Computational results on a class of quadratic bilevel programs are reported.</description><subject>Algorithms</subject><subject>Branch &amp; bound algorithms</subject><subject>Computer Science</subject><subject>Convex analysis</subject><subject>Laboratories</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Real Functions</subject><subject>Studies</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEUxIMoWKsfwFvw5iH6kmySzbHUPxULXvQcstlsuyXd1KQW_PbusipePD0YfjPMG4QuKdxQAHWbKZS6JAAl0ZwJoo7QhArFCdNUHqMJ6F4UAPQUneW8AQBdCjZBz3dzvEtxlex223YrvPdu3bXvHz7jJiacYzgMssUu2JxxbHAXu9B23iZctcEffPjx53N00tiQ_cX3naK3h_vX-YIsXx6f5rMlcbzQe1IUvNaVB-FqJhmzXAvnuXNWSGhqUXLBKfgBqq3VsqBM17JSUlWVrJmr-RRdj7lrG8wutVubPk20rVnMlmbQgEouVVEeaM9ejWxfcvhqbzbxI3V9PUN1IZXSUvUQHSGXYs7JN7-pFMwwrxnnNf28ZpjXDB42enLPdiuf_gT_a_oCurx8dg</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Hoai An, Le Thi</creator><creator>Tao, Pham Dinh</creator><creator>Nguyen Canh, Nam</creator><creator>Van Thoai, Nguyen</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid></search><sort><creationdate>20090701</creationdate><title>DC programming techniques for solving a class of nonlinear bilevel programs</title><author>Hoai An, Le Thi ; Tao, Pham Dinh ; Nguyen Canh, Nam ; Van Thoai, Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-443d9be05cd2622a395ce3cca560fd5835310e43d9daa964129d6b767bb6d2cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Branch &amp; bound algorithms</topic><topic>Computer Science</topic><topic>Convex analysis</topic><topic>Laboratories</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Real Functions</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoai An, Le Thi</creatorcontrib><creatorcontrib>Tao, Pham Dinh</creatorcontrib><creatorcontrib>Nguyen Canh, Nam</creatorcontrib><creatorcontrib>Van Thoai, Nguyen</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoai An, Le Thi</au><au>Tao, Pham Dinh</au><au>Nguyen Canh, Nam</au><au>Van Thoai, Nguyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DC programming techniques for solving a class of nonlinear bilevel programs</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>44</volume><issue>3</issue><spage>313</spage><epage>337</epage><pages>313-337</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>We propose a method for finding a global solution of a class of nonlinear bilevel programs, in which the objective function in the first level is a DC function, and the second level consists of finding a Karush-Kuhn-Tucker point of a quadratic programming problem. This method is a combination of the local algorithm DCA in DC programming with a branch and bound scheme well known in discrete and global optimization. Computational results on a class of quadratic bilevel programs are reported.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10898-008-9325-7</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2009-07, Vol.44 (3), p.313-337
issn 0925-5001
1573-2916
language eng
recordid cdi_hal_primary_oai_HAL_hal_01636748v1
source SpringerLink Journals
subjects Algorithms
Branch & bound algorithms
Computer Science
Convex analysis
Laboratories
Mathematical programming
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Real Functions
Studies
title DC programming techniques for solving a class of nonlinear bilevel programs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DC%20programming%20techniques%20for%20solving%20a%20class%20of%20nonlinear%20bilevel%20programs&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Hoai%20An,%20Le%20Thi&rft.date=2009-07-01&rft.volume=44&rft.issue=3&rft.spage=313&rft.epage=337&rft.pages=313-337&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-008-9325-7&rft_dat=%3Cproquest_hal_p%3E1749073431%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=194677967&rft_id=info:pmid/&rfr_iscdi=true