Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms
In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in...
Gespeichert in:
Veröffentlicht in: | Neural networks 2014-11, Vol.59, p.36-50 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | |
container_start_page | 36 |
container_title | Neural networks |
container_volume | 59 |
creator | Le Thi, Hoai An Vo, Xuan Thanh Pham Dinh, Tao |
description | In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in treating ℓ0-norm in feature selection problem is overcome by using appropriate approximations and Difference of Convex functions (DC) programming and DC Algorithms (DCA). The computational results show that the proposed robust optimization approaches are superior than a traditional approach in immunizing perturbation of the data. |
doi_str_mv | 10.1016/j.neunet.2014.06.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01636653v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608014001476</els_id><sourcerecordid>1554473915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-eee0fe1e999ac29edbca82a5c3a626271c98c0a4b923f9e5f6d261b741740e1e3</originalsourceid><addsrcrecordid>eNp9kU-P1SAUxYnROM_Rb2AMGxNdtAKltHVhMpk4jskzJv7bklt6cXjpK0-gL-rCzy61z3HnBgj5nXvgHEIec1ZyxtWLXTnhPGEqBeOyZKpknN8hG942XSGaVtwlG9Z2VaFYy87Igxh3jDHVyuo-ORM1U5JJtiG_rhDSHJBGHNEk5ydqfaCjmxAC_fjlXaTzNGDIq8GQwE10gAQv6QffzzFRf0hu737CH2UPEQeaD4OzFgNmCfWWGj8d8Tu1ecSCRQrjVx9cutnHh-SehTHio9N-Tj5fvf50eV1s3795e3mxLYwUKhWIyCxy7LoOjOhw6A20AmpTgRJKNNx0rWEg-05UtsPaqkEo3jeSN5JlXXVOnq9zb2DUh-D2EH5oD05fX2z1cpcTrZSqqyPP7LOVPQT_bcaY9N5Fg-MIE_o5al7XUjZVx-uMyhU1wccY0N7O5kwvLemdXlvSS0uaqWy0ODw5Ocz9Hodb0d9aMvD0BEA0MNoAk3HxH9c2Vf70wr1aOczZHR0GHY1bYh9cyG3qwbv_v-Q37jOz5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554473915</pqid></control><display><type>article</type><title>Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Le Thi, Hoai An ; Vo, Xuan Thanh ; Pham Dinh, Tao</creator><creatorcontrib>Le Thi, Hoai An ; Vo, Xuan Thanh ; Pham Dinh, Tao</creatorcontrib><description>In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in treating ℓ0-norm in feature selection problem is overcome by using appropriate approximations and Difference of Convex functions (DC) programming and DC Algorithms (DCA). The computational results show that the proposed robust optimization approaches are superior than a traditional approach in immunizing perturbation of the data.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2014.06.011</identifier><identifier>PMID: 25064040</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Computer Science ; Computer science; control theory; systems ; Data Interpretation, Statistical ; Data processing. List processing. Character string processing ; DC programming ; DCA ; Decision theory. Utility theory ; Exact sciences and technology ; Feature selection ; Humans ; Leukemia - genetics ; Linear Models ; Memory organisation. Data processing ; Microarray Analysis ; Operational research and scientific management ; Operational research. Management science ; Reliability theory. Replacement problems ; Robust optimization ; Software ; Support Vector Machine ; SVM ; Theoretical computing ; Weather</subject><ispartof>Neural networks, 2014-11, Vol.59, p.36-50</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-eee0fe1e999ac29edbca82a5c3a626271c98c0a4b923f9e5f6d261b741740e1e3</citedby><cites>FETCH-LOGICAL-c426t-eee0fe1e999ac29edbca82a5c3a626271c98c0a4b923f9e5f6d261b741740e1e3</cites><orcidid>0000-0002-2239-2100 ; 0000-0001-9147-724X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2014.06.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28732710$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25064040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01636653$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Thi, Hoai An</creatorcontrib><creatorcontrib>Vo, Xuan Thanh</creatorcontrib><creatorcontrib>Pham Dinh, Tao</creatorcontrib><title>Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in treating ℓ0-norm in feature selection problem is overcome by using appropriate approximations and Difference of Convex functions (DC) programming and DC Algorithms (DCA). The computational results show that the proposed robust optimization approaches are superior than a traditional approach in immunizing perturbation of the data.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Data Interpretation, Statistical</subject><subject>Data processing. List processing. Character string processing</subject><subject>DC programming</subject><subject>DCA</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Feature selection</subject><subject>Humans</subject><subject>Leukemia - genetics</subject><subject>Linear Models</subject><subject>Memory organisation. Data processing</subject><subject>Microarray Analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Reliability theory. Replacement problems</subject><subject>Robust optimization</subject><subject>Software</subject><subject>Support Vector Machine</subject><subject>SVM</subject><subject>Theoretical computing</subject><subject>Weather</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-P1SAUxYnROM_Rb2AMGxNdtAKltHVhMpk4jskzJv7bklt6cXjpK0-gL-rCzy61z3HnBgj5nXvgHEIec1ZyxtWLXTnhPGEqBeOyZKpknN8hG942XSGaVtwlG9Z2VaFYy87Igxh3jDHVyuo-ORM1U5JJtiG_rhDSHJBGHNEk5ydqfaCjmxAC_fjlXaTzNGDIq8GQwE10gAQv6QffzzFRf0hu737CH2UPEQeaD4OzFgNmCfWWGj8d8Tu1ecSCRQrjVx9cutnHh-SehTHio9N-Tj5fvf50eV1s3795e3mxLYwUKhWIyCxy7LoOjOhw6A20AmpTgRJKNNx0rWEg-05UtsPaqkEo3jeSN5JlXXVOnq9zb2DUh-D2EH5oD05fX2z1cpcTrZSqqyPP7LOVPQT_bcaY9N5Fg-MIE_o5al7XUjZVx-uMyhU1wccY0N7O5kwvLemdXlvSS0uaqWy0ODw5Ocz9Hodb0d9aMvD0BEA0MNoAk3HxH9c2Vf70wr1aOczZHR0GHY1bYh9cyG3qwbv_v-Q37jOz5Q</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Le Thi, Hoai An</creator><creator>Vo, Xuan Thanh</creator><creator>Pham Dinh, Tao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid><orcidid>https://orcid.org/0000-0001-9147-724X</orcidid></search><sort><creationdate>20141101</creationdate><title>Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms</title><author>Le Thi, Hoai An ; Vo, Xuan Thanh ; Pham Dinh, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-eee0fe1e999ac29edbca82a5c3a626271c98c0a4b923f9e5f6d261b741740e1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Data Interpretation, Statistical</topic><topic>Data processing. List processing. Character string processing</topic><topic>DC programming</topic><topic>DCA</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Feature selection</topic><topic>Humans</topic><topic>Leukemia - genetics</topic><topic>Linear Models</topic><topic>Memory organisation. Data processing</topic><topic>Microarray Analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Reliability theory. Replacement problems</topic><topic>Robust optimization</topic><topic>Software</topic><topic>Support Vector Machine</topic><topic>SVM</topic><topic>Theoretical computing</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Thi, Hoai An</creatorcontrib><creatorcontrib>Vo, Xuan Thanh</creatorcontrib><creatorcontrib>Pham Dinh, Tao</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Thi, Hoai An</au><au>Vo, Xuan Thanh</au><au>Pham Dinh, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>59</volume><spage>36</spage><epage>50</epage><pages>36-50</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in treating ℓ0-norm in feature selection problem is overcome by using appropriate approximations and Difference of Convex functions (DC) programming and DC Algorithms (DCA). The computational results show that the proposed robust optimization approaches are superior than a traditional approach in immunizing perturbation of the data.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>25064040</pmid><doi>10.1016/j.neunet.2014.06.011</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid><orcidid>https://orcid.org/0000-0001-9147-724X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2014-11, Vol.59, p.36-50 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01636653v1 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Computer Science Computer science control theory systems Data Interpretation, Statistical Data processing. List processing. Character string processing DC programming DCA Decision theory. Utility theory Exact sciences and technology Feature selection Humans Leukemia - genetics Linear Models Memory organisation. Data processing Microarray Analysis Operational research and scientific management Operational research. Management science Reliability theory. Replacement problems Robust optimization Software Support Vector Machine SVM Theoretical computing Weather |
title | Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20for%20linear%20SVMs%20under%20uncertain%20data:%20Robust%20optimization%20based%20on%20difference%20of%20convex%20functions%20algorithms&rft.jtitle=Neural%20networks&rft.au=Le%20Thi,%20Hoai%20An&rft.date=2014-11-01&rft.volume=59&rft.spage=36&rft.epage=50&rft.pages=36-50&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2014.06.011&rft_dat=%3Cproquest_hal_p%3E1554473915%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554473915&rft_id=info:pmid/25064040&rft_els_id=S0893608014001476&rfr_iscdi=true |