Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms

In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2014-11, Vol.59, p.36-50
Hauptverfasser: Le Thi, Hoai An, Vo, Xuan Thanh, Pham Dinh, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue
container_start_page 36
container_title Neural networks
container_volume 59
creator Le Thi, Hoai An
Vo, Xuan Thanh
Pham Dinh, Tao
description In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in treating ℓ0-norm in feature selection problem is overcome by using appropriate approximations and Difference of Convex functions (DC) programming and DC Algorithms (DCA). The computational results show that the proposed robust optimization approaches are superior than a traditional approach in immunizing perturbation of the data.
doi_str_mv 10.1016/j.neunet.2014.06.011
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01636653v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608014001476</els_id><sourcerecordid>1554473915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-eee0fe1e999ac29edbca82a5c3a626271c98c0a4b923f9e5f6d261b741740e1e3</originalsourceid><addsrcrecordid>eNp9kU-P1SAUxYnROM_Rb2AMGxNdtAKltHVhMpk4jskzJv7bklt6cXjpK0-gL-rCzy61z3HnBgj5nXvgHEIec1ZyxtWLXTnhPGEqBeOyZKpknN8hG942XSGaVtwlG9Z2VaFYy87Igxh3jDHVyuo-ORM1U5JJtiG_rhDSHJBGHNEk5ydqfaCjmxAC_fjlXaTzNGDIq8GQwE10gAQv6QffzzFRf0hu737CH2UPEQeaD4OzFgNmCfWWGj8d8Tu1ecSCRQrjVx9cutnHh-SehTHio9N-Tj5fvf50eV1s3795e3mxLYwUKhWIyCxy7LoOjOhw6A20AmpTgRJKNNx0rWEg-05UtsPaqkEo3jeSN5JlXXVOnq9zb2DUh-D2EH5oD05fX2z1cpcTrZSqqyPP7LOVPQT_bcaY9N5Fg-MIE_o5al7XUjZVx-uMyhU1wccY0N7O5kwvLemdXlvSS0uaqWy0ODw5Ocz9Hodb0d9aMvD0BEA0MNoAk3HxH9c2Vf70wr1aOczZHR0GHY1bYh9cyG3qwbv_v-Q37jOz5Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1554473915</pqid></control><display><type>article</type><title>Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Le Thi, Hoai An ; Vo, Xuan Thanh ; Pham Dinh, Tao</creator><creatorcontrib>Le Thi, Hoai An ; Vo, Xuan Thanh ; Pham Dinh, Tao</creatorcontrib><description>In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in treating ℓ0-norm in feature selection problem is overcome by using appropriate approximations and Difference of Convex functions (DC) programming and DC Algorithms (DCA). The computational results show that the proposed robust optimization approaches are superior than a traditional approach in immunizing perturbation of the data.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2014.06.011</identifier><identifier>PMID: 25064040</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Algorithms ; Applied sciences ; Computer Science ; Computer science; control theory; systems ; Data Interpretation, Statistical ; Data processing. List processing. Character string processing ; DC programming ; DCA ; Decision theory. Utility theory ; Exact sciences and technology ; Feature selection ; Humans ; Leukemia - genetics ; Linear Models ; Memory organisation. Data processing ; Microarray Analysis ; Operational research and scientific management ; Operational research. Management science ; Reliability theory. Replacement problems ; Robust optimization ; Software ; Support Vector Machine ; SVM ; Theoretical computing ; Weather</subject><ispartof>Neural networks, 2014-11, Vol.59, p.36-50</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-eee0fe1e999ac29edbca82a5c3a626271c98c0a4b923f9e5f6d261b741740e1e3</citedby><cites>FETCH-LOGICAL-c426t-eee0fe1e999ac29edbca82a5c3a626271c98c0a4b923f9e5f6d261b741740e1e3</cites><orcidid>0000-0002-2239-2100 ; 0000-0001-9147-724X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2014.06.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28732710$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25064040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-01636653$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Thi, Hoai An</creatorcontrib><creatorcontrib>Vo, Xuan Thanh</creatorcontrib><creatorcontrib>Pham Dinh, Tao</creatorcontrib><title>Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in treating ℓ0-norm in feature selection problem is overcome by using appropriate approximations and Difference of Convex functions (DC) programming and DC Algorithms (DCA). The computational results show that the proposed robust optimization approaches are superior than a traditional approach in immunizing perturbation of the data.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Data Interpretation, Statistical</subject><subject>Data processing. List processing. Character string processing</subject><subject>DC programming</subject><subject>DCA</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Feature selection</subject><subject>Humans</subject><subject>Leukemia - genetics</subject><subject>Linear Models</subject><subject>Memory organisation. Data processing</subject><subject>Microarray Analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Reliability theory. Replacement problems</subject><subject>Robust optimization</subject><subject>Software</subject><subject>Support Vector Machine</subject><subject>SVM</subject><subject>Theoretical computing</subject><subject>Weather</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-P1SAUxYnROM_Rb2AMGxNdtAKltHVhMpk4jskzJv7bklt6cXjpK0-gL-rCzy61z3HnBgj5nXvgHEIec1ZyxtWLXTnhPGEqBeOyZKpknN8hG942XSGaVtwlG9Z2VaFYy87Igxh3jDHVyuo-ORM1U5JJtiG_rhDSHJBGHNEk5ydqfaCjmxAC_fjlXaTzNGDIq8GQwE10gAQv6QffzzFRf0hu737CH2UPEQeaD4OzFgNmCfWWGj8d8Tu1ecSCRQrjVx9cutnHh-SehTHio9N-Tj5fvf50eV1s3795e3mxLYwUKhWIyCxy7LoOjOhw6A20AmpTgRJKNNx0rWEg-05UtsPaqkEo3jeSN5JlXXVOnq9zb2DUh-D2EH5oD05fX2z1cpcTrZSqqyPP7LOVPQT_bcaY9N5Fg-MIE_o5al7XUjZVx-uMyhU1wccY0N7O5kwvLemdXlvSS0uaqWy0ODw5Ocz9Hodb0d9aMvD0BEA0MNoAk3HxH9c2Vf70wr1aOczZHR0GHY1bYh9cyG3qwbv_v-Q37jOz5Q</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Le Thi, Hoai An</creator><creator>Vo, Xuan Thanh</creator><creator>Pham Dinh, Tao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid><orcidid>https://orcid.org/0000-0001-9147-724X</orcidid></search><sort><creationdate>20141101</creationdate><title>Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms</title><author>Le Thi, Hoai An ; Vo, Xuan Thanh ; Pham Dinh, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-eee0fe1e999ac29edbca82a5c3a626271c98c0a4b923f9e5f6d261b741740e1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Data Interpretation, Statistical</topic><topic>Data processing. List processing. Character string processing</topic><topic>DC programming</topic><topic>DCA</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Feature selection</topic><topic>Humans</topic><topic>Leukemia - genetics</topic><topic>Linear Models</topic><topic>Memory organisation. Data processing</topic><topic>Microarray Analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Reliability theory. Replacement problems</topic><topic>Robust optimization</topic><topic>Software</topic><topic>Support Vector Machine</topic><topic>SVM</topic><topic>Theoretical computing</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Thi, Hoai An</creatorcontrib><creatorcontrib>Vo, Xuan Thanh</creatorcontrib><creatorcontrib>Pham Dinh, Tao</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Le Thi, Hoai An</au><au>Vo, Xuan Thanh</au><au>Pham Dinh, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>59</volume><spage>36</spage><epage>50</epage><pages>36-50</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>In this paper, we consider the problem of feature selection for linear SVMs on uncertain data that is inherently prevalent in almost all datasets. Using principles of Robust Optimization, we propose robust schemes to handle data with ellipsoidal model and box model of uncertainty. The difficulty in treating ℓ0-norm in feature selection problem is overcome by using appropriate approximations and Difference of Convex functions (DC) programming and DC Algorithms (DCA). The computational results show that the proposed robust optimization approaches are superior than a traditional approach in immunizing perturbation of the data.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>25064040</pmid><doi>10.1016/j.neunet.2014.06.011</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2239-2100</orcidid><orcidid>https://orcid.org/0000-0001-9147-724X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2014-11, Vol.59, p.36-50
issn 0893-6080
1879-2782
language eng
recordid cdi_hal_primary_oai_HAL_hal_01636653v1
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Computer Science
Computer science
control theory
systems
Data Interpretation, Statistical
Data processing. List processing. Character string processing
DC programming
DCA
Decision theory. Utility theory
Exact sciences and technology
Feature selection
Humans
Leukemia - genetics
Linear Models
Memory organisation. Data processing
Microarray Analysis
Operational research and scientific management
Operational research. Management science
Reliability theory. Replacement problems
Robust optimization
Software
Support Vector Machine
SVM
Theoretical computing
Weather
title Feature selection for linear SVMs under uncertain data: Robust optimization based on difference of convex functions algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A45%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20for%20linear%20SVMs%20under%20uncertain%20data:%20Robust%20optimization%20based%20on%20difference%20of%20convex%20functions%20algorithms&rft.jtitle=Neural%20networks&rft.au=Le%20Thi,%20Hoai%20An&rft.date=2014-11-01&rft.volume=59&rft.spage=36&rft.epage=50&rft.pages=36-50&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2014.06.011&rft_dat=%3Cproquest_hal_p%3E1554473915%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1554473915&rft_id=info:pmid/25064040&rft_els_id=S0893608014001476&rfr_iscdi=true