Origin of EL3 chondrites: Evidence for variable C/O ratios during their course of formation—A state of the art scrutiny

Mineral inventories of enstatite chondrites; (EH and EL) are strictly dictated by combined parameters mainly very low dual oxygen (fO2) and sulfur (fS2) fugacities. They are best preserved in the Almahata Sitta MS‐17, MS‐177 fragments, and the ALHA 77295 and MAC 88136 Antarctic meteorites. These con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meteoritics & planetary science 2017-05, Vol.52 (5), p.781-806
Hauptverfasser: El Goresy, A., Lin, Y., Miyahara, M., Gannoun, A., Boyet, M., Ohtani, E., Gillet, P., Trieloff, M., Simionovici, A., Feng, L., Lemelle, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mineral inventories of enstatite chondrites; (EH and EL) are strictly dictated by combined parameters mainly very low dual oxygen (fO2) and sulfur (fS2) fugacities. They are best preserved in the Almahata Sitta MS‐17, MS‐177 fragments, and the ALHA 77295 and MAC 88136 Antarctic meteorites. These conditions induce a stark change of the geochemical behavior of nominally lithophile elements to chalcophile or even siderophile and changes in the elemental partitioning thus leading to formation of unusual mineral assemblages with high abundance of exotic sulfide species and enrichment in the metallic alloys, for example, silicides and phosphides. Origin and mode of formation of these exotic chondrites, and their parental source regions could be best scrutinized by multitask research experiments of the most primitive members covering mineralogical, petrological, cosmochemical, and indispensably short‐lived isotopic chronology. The magnitude of temperature and pressure prevailed during their formation in their source regions could eventually be reasonably estimated: pre‐ and postaccretionary could eventually be deduced. The dual low fugacities are regulated by the carbon to oxygen ratios estimated to be >0.83 and
ISSN:1086-9379
1945-5100
DOI:10.1111/maps.12832