Monocular Vision for Mobile Robot Localization and Autonomous Navigation
Issue Title: Special Issue: Vision and Robotics -- Joint with The International Journal of Robotics Research Guest Editors: Greg Hager, Martial Hebert and Seth Hutchinson This paper presents a new real-time localization system for a mobile robot. We show that autonomous navigation is possible in out...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 2007-09, Vol.74 (3), p.237-260 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 3 |
container_start_page | 237 |
container_title | International journal of computer vision |
container_volume | 74 |
creator | Royer, Eric Lhuillier, Maxime Dhome, Michel Lavest, Jean-Marc |
description | Issue Title: Special Issue: Vision and Robotics -- Joint with The International Journal of Robotics Research Guest Editors: Greg Hager, Martial Hebert and Seth Hutchinson This paper presents a new real-time localization system for a mobile robot. We show that autonomous navigation is possible in outdoor situation with the use of a single camera and natural landmarks. To do that, we use a three step approach. In a learning step, the robot is manually guided on a path and a video sequence is recorded with a front looking camera. Then a structure from motion algorithm is used to build a 3D map from this learning sequence. Finally in the navigation step, the robot uses this map to compute its localization in real-time and it follows the learning path or a slightly different path if desired. The vision algorithms used for map building and localization are first detailed. Then a large part of the paper is dedicated to the experimental evaluation of the accuracy and robustness of our algorithms based on experimental data collected during two years in various environments.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11263-006-0023-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01635679v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2793860921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-272701471a97ce7020e530b5902141a74fd37233dfbeaab6ce1ba811d0a384503</originalsourceid><addsrcrecordid>eNpdkU1LxDAQhoMouK7-AG8FQfBQnUnaZHtcFnWFroKo15C2qWbpNmvSLqy_3tSKBw_DwLzPfPESco5wjQDixiNSzmIAHoKyeH9AJpgKFmMC6SGZQEYhTnmGx-TE-zUEaEbZhCxXtrVl3ygXvRlvbBvV1kUrW5hGR8-2sF2U21I15kt1g6raKpr3XWja2N5Hj2pn3n-UU3JUq8brs988Ja93ty-LZZw_3T8s5nlcJonoYiqoAEwEqkyUWgAFnTIo0gwoJqhEUldMUMaqutBKFbzUWKgZYgWKzZIU2JRcjXM_VCO3zmyU20urjFzOcznUADlLuch2GNjLkd06-9lr38mN8aVuGtXqcL1kAAmnIg3gxT9wbXvXhj8kIjKOgqIIFI5U6az3Ttd_-xHk4IIcXZDBBTm4IPfsG3NTeFo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113617217</pqid></control><display><type>article</type><title>Monocular Vision for Mobile Robot Localization and Autonomous Navigation</title><source>Springer Nature - Complete Springer Journals</source><creator>Royer, Eric ; Lhuillier, Maxime ; Dhome, Michel ; Lavest, Jean-Marc</creator><creatorcontrib>Royer, Eric ; Lhuillier, Maxime ; Dhome, Michel ; Lavest, Jean-Marc</creatorcontrib><description>Issue Title: Special Issue: Vision and Robotics -- Joint with The International Journal of Robotics Research Guest Editors: Greg Hager, Martial Hebert and Seth Hutchinson This paper presents a new real-time localization system for a mobile robot. We show that autonomous navigation is possible in outdoor situation with the use of a single camera and natural landmarks. To do that, we use a three step approach. In a learning step, the robot is manually guided on a path and a video sequence is recorded with a front looking camera. Then a structure from motion algorithm is used to build a 3D map from this learning sequence. Finally in the navigation step, the robot uses this map to compute its localization in real-time and it follows the learning path or a slightly different path if desired. The vision algorithms used for map building and localization are first detailed. Then a large part of the paper is dedicated to the experimental evaluation of the accuracy and robustness of our algorithms based on experimental data collected during two years in various environments.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-006-0023-y</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Algorithms ; Computer Science ; Computer Vision and Pattern Recognition ; Localization ; Robotics ; Robots ; Studies</subject><ispartof>International journal of computer vision, 2007-09, Vol.74 (3), p.237-260</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-272701471a97ce7020e530b5902141a74fd37233dfbeaab6ce1ba811d0a384503</citedby><cites>FETCH-LOGICAL-c447t-272701471a97ce7020e530b5902141a74fd37233dfbeaab6ce1ba811d0a384503</cites><orcidid>0000-0003-3967-2712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01635679$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Royer, Eric</creatorcontrib><creatorcontrib>Lhuillier, Maxime</creatorcontrib><creatorcontrib>Dhome, Michel</creatorcontrib><creatorcontrib>Lavest, Jean-Marc</creatorcontrib><title>Monocular Vision for Mobile Robot Localization and Autonomous Navigation</title><title>International journal of computer vision</title><description>Issue Title: Special Issue: Vision and Robotics -- Joint with The International Journal of Robotics Research Guest Editors: Greg Hager, Martial Hebert and Seth Hutchinson This paper presents a new real-time localization system for a mobile robot. We show that autonomous navigation is possible in outdoor situation with the use of a single camera and natural landmarks. To do that, we use a three step approach. In a learning step, the robot is manually guided on a path and a video sequence is recorded with a front looking camera. Then a structure from motion algorithm is used to build a 3D map from this learning sequence. Finally in the navigation step, the robot uses this map to compute its localization in real-time and it follows the learning path or a slightly different path if desired. The vision algorithms used for map building and localization are first detailed. Then a large part of the paper is dedicated to the experimental evaluation of the accuracy and robustness of our algorithms based on experimental data collected during two years in various environments.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Localization</subject><subject>Robotics</subject><subject>Robots</subject><subject>Studies</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkU1LxDAQhoMouK7-AG8FQfBQnUnaZHtcFnWFroKo15C2qWbpNmvSLqy_3tSKBw_DwLzPfPESco5wjQDixiNSzmIAHoKyeH9AJpgKFmMC6SGZQEYhTnmGx-TE-zUEaEbZhCxXtrVl3ygXvRlvbBvV1kUrW5hGR8-2sF2U21I15kt1g6raKpr3XWja2N5Hj2pn3n-UU3JUq8brs988Ja93ty-LZZw_3T8s5nlcJonoYiqoAEwEqkyUWgAFnTIo0gwoJqhEUldMUMaqutBKFbzUWKgZYgWKzZIU2JRcjXM_VCO3zmyU20urjFzOcznUADlLuch2GNjLkd06-9lr38mN8aVuGtXqcL1kAAmnIg3gxT9wbXvXhj8kIjKOgqIIFI5U6az3Ttd_-xHk4IIcXZDBBTm4IPfsG3NTeFo</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Royer, Eric</creator><creator>Lhuillier, Maxime</creator><creator>Dhome, Michel</creator><creator>Lavest, Jean-Marc</creator><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3967-2712</orcidid></search><sort><creationdate>20070901</creationdate><title>Monocular Vision for Mobile Robot Localization and Autonomous Navigation</title><author>Royer, Eric ; Lhuillier, Maxime ; Dhome, Michel ; Lavest, Jean-Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-272701471a97ce7020e530b5902141a74fd37233dfbeaab6ce1ba811d0a384503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Localization</topic><topic>Robotics</topic><topic>Robots</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Royer, Eric</creatorcontrib><creatorcontrib>Lhuillier, Maxime</creatorcontrib><creatorcontrib>Dhome, Michel</creatorcontrib><creatorcontrib>Lavest, Jean-Marc</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Royer, Eric</au><au>Lhuillier, Maxime</au><au>Dhome, Michel</au><au>Lavest, Jean-Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monocular Vision for Mobile Robot Localization and Autonomous Navigation</atitle><jtitle>International journal of computer vision</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>74</volume><issue>3</issue><spage>237</spage><epage>260</epage><pages>237-260</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>Issue Title: Special Issue: Vision and Robotics -- Joint with The International Journal of Robotics Research Guest Editors: Greg Hager, Martial Hebert and Seth Hutchinson This paper presents a new real-time localization system for a mobile robot. We show that autonomous navigation is possible in outdoor situation with the use of a single camera and natural landmarks. To do that, we use a three step approach. In a learning step, the robot is manually guided on a path and a video sequence is recorded with a front looking camera. Then a structure from motion algorithm is used to build a 3D map from this learning sequence. Finally in the navigation step, the robot uses this map to compute its localization in real-time and it follows the learning path or a slightly different path if desired. The vision algorithms used for map building and localization are first detailed. Then a large part of the paper is dedicated to the experimental evaluation of the accuracy and robustness of our algorithms based on experimental data collected during two years in various environments.[PUBLICATION ABSTRACT]</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11263-006-0023-y</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3967-2712</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2007-09, Vol.74 (3), p.237-260 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01635679v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Computer Science Computer Vision and Pattern Recognition Localization Robotics Robots Studies |
title | Monocular Vision for Mobile Robot Localization and Autonomous Navigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monocular%20Vision%20for%20Mobile%20Robot%20Localization%20and%20Autonomous%20Navigation&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Royer,%20Eric&rft.date=2007-09-01&rft.volume=74&rft.issue=3&rft.spage=237&rft.epage=260&rft.pages=237-260&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-006-0023-y&rft_dat=%3Cproquest_hal_p%3E2793860921%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113617217&rft_id=info:pmid/&rfr_iscdi=true |