Coalescence times for three genes provide sufficient information to distinguish population structure from population size changes
The increasing amount of genomic data currently available is expanding the horizons of population genetics inference. A wide range of methods have been published allowing to detect and date major changes in population size during the history of species. At the same time, there has been an increasing...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2019-01, Vol.78 (1-2), p.189-224 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | 1-2 |
container_start_page | 189 |
container_title | Journal of mathematical biology |
container_volume | 78 |
creator | Grusea, Simona Rodríguez, Willy Pinchon, Didier Chikhi, Lounès Boitard, Simon Mazet, Olivier |
description | The increasing amount of genomic data currently available is expanding the horizons of population genetics inference. A wide range of methods have been published allowing to detect and date major changes in population size during the history of species. At the same time, there has been an increasing recognition that population structure can generate genetic data similar to those generated under models of population size change. Recently, Mazet et al. (Heredity 116(4):362–371,
2016
) introduced the idea that, for any model of population structure, it is always possible to find a panmictic model with a particular function of population size-change having an identical distribution of
T
2
(the time of the first coalescence for a sample of size two). This implies that there is an identifiability problem between a panmictic and a structured model when we base our analysis only on
T
2
. In this paper, based on an analytical study of the rate matrix of the ancestral lineage process, we obtain new theoretical results about the joint distribution of the coalescence times
(
T
3
,
T
2
)
for a sample of three haploid genes in a
n
-island model with constant size. Even if, for any
k
≥
2
, it is always possible to find a size-change scenario for a panmictic population such that the marginal distribution of
T
k
is exactly the same as in a
n
-island model with constant population size, we show that the joint distribution of the coalescence times
(
T
3
,
T
2
)
for a sample of three genes contains enough information to distinguish between a panmictic population and a
n
-island model of constant size. |
doi_str_mv | 10.1007/s00285-018-1272-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01631938v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2072563650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-528655ad3bce217976e24337039f70e2db7aca3c417bd2c784c17d51ebfdd9c83</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS1ERZfCD-CCLHEph5QZO4mTY7WiFGklLnC2HGey6yqJF9upVG78c7xKKQKJk2W_b55n5jH2BuEKAdSHCCCaqgBsChRKFOUztsFSigJLrJ-zDUiQRd2gOGcvY7wDQFW1-IKdS8hSDbhhP7fejBQtzZZ4chNFPvjA0yEQ8T3N-X4M_t71xOMyDM46mhN3c4Ymk5yfefK8dzG5eb-4eOBHf1zGVYkpLDYtgfgQ_PSX4n4Qtwcz7ym-YmeDGSO9fjwv2Lebj1-3t8Xuy6fP2-tdYcuyTUUlmrqqTC87SwJVq2oSpZQKZDsoINF3ylgjbYmq64VVTWlR9RVSN_R9axt5wd6vvgcz6mNwkwkP2hunb693-vQGWEtsZXOPmb1c2Tz794Vi0pPLOxpHM5NfohagpBRQocjou3_QO7-EOU9yokRVy7qCTOFK2eBjDDQ8dYCgT1nqNcvcRKNPWeoy17x9dF66ifqnit_hZUCsQMxSXmX48_X_XX8B8HarNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072563650</pqid></control><display><type>article</type><title>Coalescence times for three genes provide sufficient information to distinguish population structure from population size changes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Grusea, Simona ; Rodríguez, Willy ; Pinchon, Didier ; Chikhi, Lounès ; Boitard, Simon ; Mazet, Olivier</creator><creatorcontrib>Grusea, Simona ; Rodríguez, Willy ; Pinchon, Didier ; Chikhi, Lounès ; Boitard, Simon ; Mazet, Olivier</creatorcontrib><description>The increasing amount of genomic data currently available is expanding the horizons of population genetics inference. A wide range of methods have been published allowing to detect and date major changes in population size during the history of species. At the same time, there has been an increasing recognition that population structure can generate genetic data similar to those generated under models of population size change. Recently, Mazet et al. (Heredity 116(4):362–371,
2016
) introduced the idea that, for any model of population structure, it is always possible to find a panmictic model with a particular function of population size-change having an identical distribution of
T
2
(the time of the first coalescence for a sample of size two). This implies that there is an identifiability problem between a panmictic and a structured model when we base our analysis only on
T
2
. In this paper, based on an analytical study of the rate matrix of the ancestral lineage process, we obtain new theoretical results about the joint distribution of the coalescence times
(
T
3
,
T
2
)
for a sample of three haploid genes in a
n
-island model with constant size. Even if, for any
k
≥
2
, it is always possible to find a size-change scenario for a panmictic population such that the marginal distribution of
T
k
is exactly the same as in a
n
-island model with constant population size, we show that the joint distribution of the coalescence times
(
T
3
,
T
2
)
for a sample of three genes contains enough information to distinguish between a panmictic population and a
n
-island model of constant size.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-018-1272-4</identifier><identifier>PMID: 30030601</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Change detection ; Coalescence ; Coalescing ; General Mathematics ; Genes ; Genetics ; Heredity ; Life Sciences ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Population ; Population genetics ; Population number ; Population structure ; Populations and Evolution</subject><ispartof>Journal of mathematical biology, 2019-01, Vol.78 (1-2), p.189-224</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Journal of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-528655ad3bce217976e24337039f70e2db7aca3c417bd2c784c17d51ebfdd9c83</citedby><cites>FETCH-LOGICAL-c449t-528655ad3bce217976e24337039f70e2db7aca3c417bd2c784c17d51ebfdd9c83</cites><orcidid>0000-0003-0391-1080 ; 0000-0002-2499-5052 ; 0000-0002-3217-2187 ; 0000-0002-1140-0718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-018-1272-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-018-1272-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30030601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01631938$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grusea, Simona</creatorcontrib><creatorcontrib>Rodríguez, Willy</creatorcontrib><creatorcontrib>Pinchon, Didier</creatorcontrib><creatorcontrib>Chikhi, Lounès</creatorcontrib><creatorcontrib>Boitard, Simon</creatorcontrib><creatorcontrib>Mazet, Olivier</creatorcontrib><title>Coalescence times for three genes provide sufficient information to distinguish population structure from population size changes</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>The increasing amount of genomic data currently available is expanding the horizons of population genetics inference. A wide range of methods have been published allowing to detect and date major changes in population size during the history of species. At the same time, there has been an increasing recognition that population structure can generate genetic data similar to those generated under models of population size change. Recently, Mazet et al. (Heredity 116(4):362–371,
2016
) introduced the idea that, for any model of population structure, it is always possible to find a panmictic model with a particular function of population size-change having an identical distribution of
T
2
(the time of the first coalescence for a sample of size two). This implies that there is an identifiability problem between a panmictic and a structured model when we base our analysis only on
T
2
. In this paper, based on an analytical study of the rate matrix of the ancestral lineage process, we obtain new theoretical results about the joint distribution of the coalescence times
(
T
3
,
T
2
)
for a sample of three haploid genes in a
n
-island model with constant size. Even if, for any
k
≥
2
, it is always possible to find a size-change scenario for a panmictic population such that the marginal distribution of
T
k
is exactly the same as in a
n
-island model with constant population size, we show that the joint distribution of the coalescence times
(
T
3
,
T
2
)
for a sample of three genes contains enough information to distinguish between a panmictic population and a
n
-island model of constant size.</description><subject>Applications of Mathematics</subject><subject>Change detection</subject><subject>Coalescence</subject><subject>Coalescing</subject><subject>General Mathematics</subject><subject>Genes</subject><subject>Genetics</subject><subject>Heredity</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Population</subject><subject>Population genetics</subject><subject>Population number</subject><subject>Population structure</subject><subject>Populations and Evolution</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUFv1DAQhS1ERZfCD-CCLHEph5QZO4mTY7WiFGklLnC2HGey6yqJF9upVG78c7xKKQKJk2W_b55n5jH2BuEKAdSHCCCaqgBsChRKFOUztsFSigJLrJ-zDUiQRd2gOGcvY7wDQFW1-IKdS8hSDbhhP7fejBQtzZZ4chNFPvjA0yEQ8T3N-X4M_t71xOMyDM46mhN3c4Ymk5yfefK8dzG5eb-4eOBHf1zGVYkpLDYtgfgQ_PSX4n4Qtwcz7ym-YmeDGSO9fjwv2Lebj1-3t8Xuy6fP2-tdYcuyTUUlmrqqTC87SwJVq2oSpZQKZDsoINF3ylgjbYmq64VVTWlR9RVSN_R9axt5wd6vvgcz6mNwkwkP2hunb693-vQGWEtsZXOPmb1c2Tz794Vi0pPLOxpHM5NfohagpBRQocjou3_QO7-EOU9yokRVy7qCTOFK2eBjDDQ8dYCgT1nqNcvcRKNPWeoy17x9dF66ifqnit_hZUCsQMxSXmX48_X_XX8B8HarNw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Grusea, Simona</creator><creator>Rodríguez, Willy</creator><creator>Pinchon, Didier</creator><creator>Chikhi, Lounès</creator><creator>Boitard, Simon</creator><creator>Mazet, Olivier</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0391-1080</orcidid><orcidid>https://orcid.org/0000-0002-2499-5052</orcidid><orcidid>https://orcid.org/0000-0002-3217-2187</orcidid><orcidid>https://orcid.org/0000-0002-1140-0718</orcidid></search><sort><creationdate>20190101</creationdate><title>Coalescence times for three genes provide sufficient information to distinguish population structure from population size changes</title><author>Grusea, Simona ; Rodríguez, Willy ; Pinchon, Didier ; Chikhi, Lounès ; Boitard, Simon ; Mazet, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-528655ad3bce217976e24337039f70e2db7aca3c417bd2c784c17d51ebfdd9c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Change detection</topic><topic>Coalescence</topic><topic>Coalescing</topic><topic>General Mathematics</topic><topic>Genes</topic><topic>Genetics</topic><topic>Heredity</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Population</topic><topic>Population genetics</topic><topic>Population number</topic><topic>Population structure</topic><topic>Populations and Evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grusea, Simona</creatorcontrib><creatorcontrib>Rodríguez, Willy</creatorcontrib><creatorcontrib>Pinchon, Didier</creatorcontrib><creatorcontrib>Chikhi, Lounès</creatorcontrib><creatorcontrib>Boitard, Simon</creatorcontrib><creatorcontrib>Mazet, Olivier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grusea, Simona</au><au>Rodríguez, Willy</au><au>Pinchon, Didier</au><au>Chikhi, Lounès</au><au>Boitard, Simon</au><au>Mazet, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coalescence times for three genes provide sufficient information to distinguish population structure from population size changes</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>78</volume><issue>1-2</issue><spage>189</spage><epage>224</epage><pages>189-224</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>The increasing amount of genomic data currently available is expanding the horizons of population genetics inference. A wide range of methods have been published allowing to detect and date major changes in population size during the history of species. At the same time, there has been an increasing recognition that population structure can generate genetic data similar to those generated under models of population size change. Recently, Mazet et al. (Heredity 116(4):362–371,
2016
) introduced the idea that, for any model of population structure, it is always possible to find a panmictic model with a particular function of population size-change having an identical distribution of
T
2
(the time of the first coalescence for a sample of size two). This implies that there is an identifiability problem between a panmictic and a structured model when we base our analysis only on
T
2
. In this paper, based on an analytical study of the rate matrix of the ancestral lineage process, we obtain new theoretical results about the joint distribution of the coalescence times
(
T
3
,
T
2
)
for a sample of three haploid genes in a
n
-island model with constant size. Even if, for any
k
≥
2
, it is always possible to find a size-change scenario for a panmictic population such that the marginal distribution of
T
k
is exactly the same as in a
n
-island model with constant population size, we show that the joint distribution of the coalescence times
(
T
3
,
T
2
)
for a sample of three genes contains enough information to distinguish between a panmictic population and a
n
-island model of constant size.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30030601</pmid><doi>10.1007/s00285-018-1272-4</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-0391-1080</orcidid><orcidid>https://orcid.org/0000-0002-2499-5052</orcidid><orcidid>https://orcid.org/0000-0002-3217-2187</orcidid><orcidid>https://orcid.org/0000-0002-1140-0718</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2019-01, Vol.78 (1-2), p.189-224 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01631938v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Change detection Coalescence Coalescing General Mathematics Genes Genetics Heredity Life Sciences Mathematical and Computational Biology Mathematics Mathematics and Statistics Population Population genetics Population number Population structure Populations and Evolution |
title | Coalescence times for three genes provide sufficient information to distinguish population structure from population size changes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A51%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coalescence%20times%20for%20three%20genes%20provide%20sufficient%20information%20to%20distinguish%20population%20structure%20from%20population%20size%20changes&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Grusea,%20Simona&rft.date=2019-01-01&rft.volume=78&rft.issue=1-2&rft.spage=189&rft.epage=224&rft.pages=189-224&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-018-1272-4&rft_dat=%3Cproquest_hal_p%3E2072563650%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072563650&rft_id=info:pmid/30030601&rfr_iscdi=true |