Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number

Our purpose is to quantify the rate of intermittency of nonlinearly competing modes, in a dominantly mode-switching scenario. What is the rate of presence of each mode? Can they simultaneously appear in, or disappear from the signal? The study is done in the context of open flows, exhibiting self-su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2008-04, Vol.44 (4), p.597-608
Hauptverfasser: Pastur, L. R., Lusseyran, F., Faure, T. M., Fraigneau, Y., Pethieu, R., Debesse, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 608
container_issue 4
container_start_page 597
container_title Experiments in fluids
container_volume 44
creator Pastur, L. R.
Lusseyran, F.
Faure, T. M.
Fraigneau, Y.
Pethieu, R.
Debesse, P.
description Our purpose is to quantify the rate of intermittency of nonlinearly competing modes, in a dominantly mode-switching scenario. What is the rate of presence of each mode? Can they simultaneously appear in, or disappear from the signal? The study is done in the context of open flows, exhibiting self-sustained oscillations, where air is here flowing over an open cavity. Reynolds numbers are of the order of 14,000. Velocity measurements downstream of the cavity are based on a laser Doppler velocimetry technique. We propose two methods to estimate the rate of presence of each mode: one based on a complex demodulation technique, the other on the distribution of the state vectors in the phase portrait of the signal.
doi_str_mv 10.1007/s00348-007-0419-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01631936v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512337151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-c428a0666c7d4f0a66b9b20d380332dcdf42ac628e5d2b8eec1dbc0bff1c781b3</originalsourceid><addsrcrecordid>eNqNkcGKFDEQhoMoOK4-gLdcBD20ppJMOnNcFnWFAVH0HNJJZTdLdzIm3bPM25uxlz0uXqqKqq9-ivoJeQvsIzDWf6qMCam7VnZMwq7rn5ENSME7AJDPyYb1XHRSK_mSvKr1jjHY7pjeEP9jsWmO4RTTDZ1vkaacxpjQFjplj9Tl6YBznGNONKZ_RBjzPc1HLNQmmg-YqLPHOJ-onemEPi4T_YmnlEdfaVqmActr8iLYseKbh3xBfn_5_Ovqutt___rt6nLfOQl6bpFry5RSrvcyMKvUsBs480IzIbh3PkhuneIat54PGtGBHxwbQgDXaxjEBfmw6t7a0RxKnGw5mWyjub7cm3OPgRKwE-oIjX2_soeS_yxYZzPF6nAcbcK8VANKci56Cf-BboEL0bfUUFhRV3KtBcPjGcDM2SizGmXO5dko07eddw_ytjo7hmKTi_VxkTPeOKUax1eutlG6wWLu8lJSe-gT4n8Bu2yiyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512337151</pqid></control><display><type>article</type><title>Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number</title><source>SpringerLink Journals</source><creator>Pastur, L. R. ; Lusseyran, F. ; Faure, T. M. ; Fraigneau, Y. ; Pethieu, R. ; Debesse, P.</creator><creatorcontrib>Pastur, L. R. ; Lusseyran, F. ; Faure, T. M. ; Fraigneau, Y. ; Pethieu, R. ; Debesse, P.</creatorcontrib><description>Our purpose is to quantify the rate of intermittency of nonlinearly competing modes, in a dominantly mode-switching scenario. What is the rate of presence of each mode? Can they simultaneously appear in, or disappear from the signal? The study is done in the context of open flows, exhibiting self-sustained oscillations, where air is here flowing over an open cavity. Reynolds numbers are of the order of 14,000. Velocity measurements downstream of the cavity are based on a laser Doppler velocimetry technique. We propose two methods to estimate the rate of presence of each mode: one based on a complex demodulation technique, the other on the distribution of the state vectors in the phase portrait of the signal.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-007-0419-7</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Demodulation ; Doppler effect ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluid- and Aerodynamics ; Fundamental areas of phenomenology (including applications) ; Heat and Mass Transfer ; Holes ; Hydrodynamic stability ; Instability of shear flows ; Instrumentation for fluid dynamics ; Mechanics ; Oscillations ; Pattern selection; pattern formation ; Physics ; Research Article ; Reynolds number ; Velocity measurement</subject><ispartof>Experiments in fluids, 2008-04, Vol.44 (4), p.597-608</ispartof><rights>Springer-Verlag 2007</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-c428a0666c7d4f0a66b9b20d380332dcdf42ac628e5d2b8eec1dbc0bff1c781b3</citedby><cites>FETCH-LOGICAL-c418t-c428a0666c7d4f0a66b9b20d380332dcdf42ac628e5d2b8eec1dbc0bff1c781b3</cites><orcidid>0000-0003-0038-5898 ; 0000-0002-0270-9000 ; 0000-0001-9104-1569 ; 0000-0001-8606-9321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-007-0419-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-007-0419-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20241966$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01631936$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pastur, L. R.</creatorcontrib><creatorcontrib>Lusseyran, F.</creatorcontrib><creatorcontrib>Faure, T. M.</creatorcontrib><creatorcontrib>Fraigneau, Y.</creatorcontrib><creatorcontrib>Pethieu, R.</creatorcontrib><creatorcontrib>Debesse, P.</creatorcontrib><title>Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>Our purpose is to quantify the rate of intermittency of nonlinearly competing modes, in a dominantly mode-switching scenario. What is the rate of presence of each mode? Can they simultaneously appear in, or disappear from the signal? The study is done in the context of open flows, exhibiting self-sustained oscillations, where air is here flowing over an open cavity. Reynolds numbers are of the order of 14,000. Velocity measurements downstream of the cavity are based on a laser Doppler velocimetry technique. We propose two methods to estimate the rate of presence of each mode: one based on a complex demodulation technique, the other on the distribution of the state vectors in the phase portrait of the signal.</description><subject>Demodulation</subject><subject>Doppler effect</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat and Mass Transfer</subject><subject>Holes</subject><subject>Hydrodynamic stability</subject><subject>Instability of shear flows</subject><subject>Instrumentation for fluid dynamics</subject><subject>Mechanics</subject><subject>Oscillations</subject><subject>Pattern selection; pattern formation</subject><subject>Physics</subject><subject>Research Article</subject><subject>Reynolds number</subject><subject>Velocity measurement</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkcGKFDEQhoMoOK4-gLdcBD20ppJMOnNcFnWFAVH0HNJJZTdLdzIm3bPM25uxlz0uXqqKqq9-ivoJeQvsIzDWf6qMCam7VnZMwq7rn5ENSME7AJDPyYb1XHRSK_mSvKr1jjHY7pjeEP9jsWmO4RTTDZ1vkaacxpjQFjplj9Tl6YBznGNONKZ_RBjzPc1HLNQmmg-YqLPHOJ-onemEPi4T_YmnlEdfaVqmActr8iLYseKbh3xBfn_5_Ovqutt___rt6nLfOQl6bpFry5RSrvcyMKvUsBs480IzIbh3PkhuneIat54PGtGBHxwbQgDXaxjEBfmw6t7a0RxKnGw5mWyjub7cm3OPgRKwE-oIjX2_soeS_yxYZzPF6nAcbcK8VANKci56Cf-BboEL0bfUUFhRV3KtBcPjGcDM2SizGmXO5dko07eddw_ytjo7hmKTi_VxkTPeOKUax1eutlG6wWLu8lJSe-gT4n8Bu2yiyg</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Pastur, L. R.</creator><creator>Lusseyran, F.</creator><creator>Faure, T. M.</creator><creator>Fraigneau, Y.</creator><creator>Pethieu, R.</creator><creator>Debesse, P.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Verlag (Germany)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0038-5898</orcidid><orcidid>https://orcid.org/0000-0002-0270-9000</orcidid><orcidid>https://orcid.org/0000-0001-9104-1569</orcidid><orcidid>https://orcid.org/0000-0001-8606-9321</orcidid></search><sort><creationdate>20080401</creationdate><title>Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number</title><author>Pastur, L. R. ; Lusseyran, F. ; Faure, T. M. ; Fraigneau, Y. ; Pethieu, R. ; Debesse, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-c428a0666c7d4f0a66b9b20d380332dcdf42ac628e5d2b8eec1dbc0bff1c781b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Demodulation</topic><topic>Doppler effect</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat and Mass Transfer</topic><topic>Holes</topic><topic>Hydrodynamic stability</topic><topic>Instability of shear flows</topic><topic>Instrumentation for fluid dynamics</topic><topic>Mechanics</topic><topic>Oscillations</topic><topic>Pattern selection; pattern formation</topic><topic>Physics</topic><topic>Research Article</topic><topic>Reynolds number</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pastur, L. R.</creatorcontrib><creatorcontrib>Lusseyran, F.</creatorcontrib><creatorcontrib>Faure, T. M.</creatorcontrib><creatorcontrib>Fraigneau, Y.</creatorcontrib><creatorcontrib>Pethieu, R.</creatorcontrib><creatorcontrib>Debesse, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pastur, L. R.</au><au>Lusseyran, F.</au><au>Faure, T. M.</au><au>Fraigneau, Y.</au><au>Pethieu, R.</au><au>Debesse, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>44</volume><issue>4</issue><spage>597</spage><epage>608</epage><pages>597-608</pages><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>Our purpose is to quantify the rate of intermittency of nonlinearly competing modes, in a dominantly mode-switching scenario. What is the rate of presence of each mode? Can they simultaneously appear in, or disappear from the signal? The study is done in the context of open flows, exhibiting self-sustained oscillations, where air is here flowing over an open cavity. Reynolds numbers are of the order of 14,000. Velocity measurements downstream of the cavity are based on a laser Doppler velocimetry technique. We propose two methods to estimate the rate of presence of each mode: one based on a complex demodulation technique, the other on the distribution of the state vectors in the phase portrait of the signal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00348-007-0419-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0038-5898</orcidid><orcidid>https://orcid.org/0000-0002-0270-9000</orcidid><orcidid>https://orcid.org/0000-0001-9104-1569</orcidid><orcidid>https://orcid.org/0000-0001-8606-9321</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2008-04, Vol.44 (4), p.597-608
issn 0723-4864
1432-1114
language eng
recordid cdi_hal_primary_oai_HAL_hal_01631936v1
source SpringerLink Journals
subjects Demodulation
Doppler effect
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Exact sciences and technology
Fluid dynamics
Fluid flow
Fluid mechanics
Fluid- and Aerodynamics
Fundamental areas of phenomenology (including applications)
Heat and Mass Transfer
Holes
Hydrodynamic stability
Instability of shear flows
Instrumentation for fluid dynamics
Mechanics
Oscillations
Pattern selection
pattern formation
Physics
Research Article
Reynolds number
Velocity measurement
title Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20nonlinear%20mode%20competition%20in%20the%20flow%20over%20an%20open%20cavity%20at%20medium%20Reynolds%20number&rft.jtitle=Experiments%20in%20fluids&rft.au=Pastur,%20L.%20R.&rft.date=2008-04-01&rft.volume=44&rft.issue=4&rft.spage=597&rft.epage=608&rft.pages=597-608&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s00348-007-0419-7&rft_dat=%3Cproquest_hal_p%3E1512337151%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512337151&rft_id=info:pmid/&rfr_iscdi=true