Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number
Our purpose is to quantify the rate of intermittency of nonlinearly competing modes, in a dominantly mode-switching scenario. What is the rate of presence of each mode? Can they simultaneously appear in, or disappear from the signal? The study is done in the context of open flows, exhibiting self-su...
Gespeichert in:
Veröffentlicht in: | Experiments in fluids 2008-04, Vol.44 (4), p.597-608 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 608 |
---|---|
container_issue | 4 |
container_start_page | 597 |
container_title | Experiments in fluids |
container_volume | 44 |
creator | Pastur, L. R. Lusseyran, F. Faure, T. M. Fraigneau, Y. Pethieu, R. Debesse, P. |
description | Our purpose is to quantify the rate of intermittency of nonlinearly competing modes, in a dominantly mode-switching scenario. What is the rate of presence of each mode? Can they simultaneously appear in, or disappear from the signal? The study is done in the context of open flows, exhibiting self-sustained oscillations, where air is here flowing over an open cavity. Reynolds numbers are of the order of 14,000. Velocity measurements downstream of the cavity are based on a laser Doppler velocimetry technique. We propose two methods to estimate the rate of presence of each mode: one based on a complex demodulation technique, the other on the distribution of the state vectors in the phase portrait of the signal. |
doi_str_mv | 10.1007/s00348-007-0419-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01631936v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512337151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-c428a0666c7d4f0a66b9b20d380332dcdf42ac628e5d2b8eec1dbc0bff1c781b3</originalsourceid><addsrcrecordid>eNqNkcGKFDEQhoMoOK4-gLdcBD20ppJMOnNcFnWFAVH0HNJJZTdLdzIm3bPM25uxlz0uXqqKqq9-ivoJeQvsIzDWf6qMCam7VnZMwq7rn5ENSME7AJDPyYb1XHRSK_mSvKr1jjHY7pjeEP9jsWmO4RTTDZ1vkaacxpjQFjplj9Tl6YBznGNONKZ_RBjzPc1HLNQmmg-YqLPHOJ-onemEPi4T_YmnlEdfaVqmActr8iLYseKbh3xBfn_5_Ovqutt___rt6nLfOQl6bpFry5RSrvcyMKvUsBs480IzIbh3PkhuneIat54PGtGBHxwbQgDXaxjEBfmw6t7a0RxKnGw5mWyjub7cm3OPgRKwE-oIjX2_soeS_yxYZzPF6nAcbcK8VANKci56Cf-BboEL0bfUUFhRV3KtBcPjGcDM2SizGmXO5dko07eddw_ytjo7hmKTi_VxkTPeOKUax1eutlG6wWLu8lJSe-gT4n8Bu2yiyg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512337151</pqid></control><display><type>article</type><title>Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number</title><source>SpringerLink Journals</source><creator>Pastur, L. R. ; Lusseyran, F. ; Faure, T. M. ; Fraigneau, Y. ; Pethieu, R. ; Debesse, P.</creator><creatorcontrib>Pastur, L. R. ; Lusseyran, F. ; Faure, T. M. ; Fraigneau, Y. ; Pethieu, R. ; Debesse, P.</creatorcontrib><description>Our purpose is to quantify the rate of intermittency of nonlinearly competing modes, in a dominantly mode-switching scenario. What is the rate of presence of each mode? Can they simultaneously appear in, or disappear from the signal? The study is done in the context of open flows, exhibiting self-sustained oscillations, where air is here flowing over an open cavity. Reynolds numbers are of the order of 14,000. Velocity measurements downstream of the cavity are based on a laser Doppler velocimetry technique. We propose two methods to estimate the rate of presence of each mode: one based on a complex demodulation technique, the other on the distribution of the state vectors in the phase portrait of the signal.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-007-0419-7</identifier><identifier>CODEN: EXFLDU</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Demodulation ; Doppler effect ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Fluid- and Aerodynamics ; Fundamental areas of phenomenology (including applications) ; Heat and Mass Transfer ; Holes ; Hydrodynamic stability ; Instability of shear flows ; Instrumentation for fluid dynamics ; Mechanics ; Oscillations ; Pattern selection; pattern formation ; Physics ; Research Article ; Reynolds number ; Velocity measurement</subject><ispartof>Experiments in fluids, 2008-04, Vol.44 (4), p.597-608</ispartof><rights>Springer-Verlag 2007</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-c428a0666c7d4f0a66b9b20d380332dcdf42ac628e5d2b8eec1dbc0bff1c781b3</citedby><cites>FETCH-LOGICAL-c418t-c428a0666c7d4f0a66b9b20d380332dcdf42ac628e5d2b8eec1dbc0bff1c781b3</cites><orcidid>0000-0003-0038-5898 ; 0000-0002-0270-9000 ; 0000-0001-9104-1569 ; 0000-0001-8606-9321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-007-0419-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-007-0419-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20241966$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01631936$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pastur, L. R.</creatorcontrib><creatorcontrib>Lusseyran, F.</creatorcontrib><creatorcontrib>Faure, T. M.</creatorcontrib><creatorcontrib>Fraigneau, Y.</creatorcontrib><creatorcontrib>Pethieu, R.</creatorcontrib><creatorcontrib>Debesse, P.</creatorcontrib><title>Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>Our purpose is to quantify the rate of intermittency of nonlinearly competing modes, in a dominantly mode-switching scenario. What is the rate of presence of each mode? Can they simultaneously appear in, or disappear from the signal? The study is done in the context of open flows, exhibiting self-sustained oscillations, where air is here flowing over an open cavity. Reynolds numbers are of the order of 14,000. Velocity measurements downstream of the cavity are based on a laser Doppler velocimetry technique. We propose two methods to estimate the rate of presence of each mode: one based on a complex demodulation technique, the other on the distribution of the state vectors in the phase portrait of the signal.</description><subject>Demodulation</subject><subject>Doppler effect</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat and Mass Transfer</subject><subject>Holes</subject><subject>Hydrodynamic stability</subject><subject>Instability of shear flows</subject><subject>Instrumentation for fluid dynamics</subject><subject>Mechanics</subject><subject>Oscillations</subject><subject>Pattern selection; pattern formation</subject><subject>Physics</subject><subject>Research Article</subject><subject>Reynolds number</subject><subject>Velocity measurement</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkcGKFDEQhoMoOK4-gLdcBD20ppJMOnNcFnWFAVH0HNJJZTdLdzIm3bPM25uxlz0uXqqKqq9-ivoJeQvsIzDWf6qMCam7VnZMwq7rn5ENSME7AJDPyYb1XHRSK_mSvKr1jjHY7pjeEP9jsWmO4RTTDZ1vkaacxpjQFjplj9Tl6YBznGNONKZ_RBjzPc1HLNQmmg-YqLPHOJ-onemEPi4T_YmnlEdfaVqmActr8iLYseKbh3xBfn_5_Ovqutt___rt6nLfOQl6bpFry5RSrvcyMKvUsBs480IzIbh3PkhuneIat54PGtGBHxwbQgDXaxjEBfmw6t7a0RxKnGw5mWyjub7cm3OPgRKwE-oIjX2_soeS_yxYZzPF6nAcbcK8VANKci56Cf-BboEL0bfUUFhRV3KtBcPjGcDM2SizGmXO5dko07eddw_ytjo7hmKTi_VxkTPeOKUax1eutlG6wWLu8lJSe-gT4n8Bu2yiyg</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Pastur, L. R.</creator><creator>Lusseyran, F.</creator><creator>Faure, T. M.</creator><creator>Fraigneau, Y.</creator><creator>Pethieu, R.</creator><creator>Debesse, P.</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Verlag (Germany)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0038-5898</orcidid><orcidid>https://orcid.org/0000-0002-0270-9000</orcidid><orcidid>https://orcid.org/0000-0001-9104-1569</orcidid><orcidid>https://orcid.org/0000-0001-8606-9321</orcidid></search><sort><creationdate>20080401</creationdate><title>Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number</title><author>Pastur, L. R. ; Lusseyran, F. ; Faure, T. M. ; Fraigneau, Y. ; Pethieu, R. ; Debesse, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-c428a0666c7d4f0a66b9b20d380332dcdf42ac628e5d2b8eec1dbc0bff1c781b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Demodulation</topic><topic>Doppler effect</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat and Mass Transfer</topic><topic>Holes</topic><topic>Hydrodynamic stability</topic><topic>Instability of shear flows</topic><topic>Instrumentation for fluid dynamics</topic><topic>Mechanics</topic><topic>Oscillations</topic><topic>Pattern selection; pattern formation</topic><topic>Physics</topic><topic>Research Article</topic><topic>Reynolds number</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pastur, L. R.</creatorcontrib><creatorcontrib>Lusseyran, F.</creatorcontrib><creatorcontrib>Faure, T. M.</creatorcontrib><creatorcontrib>Fraigneau, Y.</creatorcontrib><creatorcontrib>Pethieu, R.</creatorcontrib><creatorcontrib>Debesse, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pastur, L. R.</au><au>Lusseyran, F.</au><au>Faure, T. M.</au><au>Fraigneau, Y.</au><au>Pethieu, R.</au><au>Debesse, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>44</volume><issue>4</issue><spage>597</spage><epage>608</epage><pages>597-608</pages><issn>0723-4864</issn><eissn>1432-1114</eissn><coden>EXFLDU</coden><abstract>Our purpose is to quantify the rate of intermittency of nonlinearly competing modes, in a dominantly mode-switching scenario. What is the rate of presence of each mode? Can they simultaneously appear in, or disappear from the signal? The study is done in the context of open flows, exhibiting self-sustained oscillations, where air is here flowing over an open cavity. Reynolds numbers are of the order of 14,000. Velocity measurements downstream of the cavity are based on a laser Doppler velocimetry technique. We propose two methods to estimate the rate of presence of each mode: one based on a complex demodulation technique, the other on the distribution of the state vectors in the phase portrait of the signal.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00348-007-0419-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0038-5898</orcidid><orcidid>https://orcid.org/0000-0002-0270-9000</orcidid><orcidid>https://orcid.org/0000-0001-9104-1569</orcidid><orcidid>https://orcid.org/0000-0001-8606-9321</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-4864 |
ispartof | Experiments in fluids, 2008-04, Vol.44 (4), p.597-608 |
issn | 0723-4864 1432-1114 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01631936v1 |
source | SpringerLink Journals |
subjects | Demodulation Doppler effect Engineering Engineering Fluid Dynamics Engineering Thermodynamics Exact sciences and technology Fluid dynamics Fluid flow Fluid mechanics Fluid- and Aerodynamics Fundamental areas of phenomenology (including applications) Heat and Mass Transfer Holes Hydrodynamic stability Instability of shear flows Instrumentation for fluid dynamics Mechanics Oscillations Pattern selection pattern formation Physics Research Article Reynolds number Velocity measurement |
title | Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20nonlinear%20mode%20competition%20in%20the%20flow%20over%20an%20open%20cavity%20at%20medium%20Reynolds%20number&rft.jtitle=Experiments%20in%20fluids&rft.au=Pastur,%20L.%20R.&rft.date=2008-04-01&rft.volume=44&rft.issue=4&rft.spage=597&rft.epage=608&rft.pages=597-608&rft.issn=0723-4864&rft.eissn=1432-1114&rft.coden=EXFLDU&rft_id=info:doi/10.1007/s00348-007-0419-7&rft_dat=%3Cproquest_hal_p%3E1512337151%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512337151&rft_id=info:pmid/&rfr_iscdi=true |