Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu+‐ATPase mutant copA− of Rubrivivax gelatinosus
Summary Two genes encoding structurally similar Copper P1B‐type ATPases can be identified in several genomes. Notwithstanding the high sequence and structural similarities these ATPases held, it has been suggested that they fulfil distinct physiological roles. In deed, we have shown that the Cu+‐ATP...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 2013-04, Vol.88 (2), p.339-351 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | 2 |
container_start_page | 339 |
container_title | Molecular microbiology |
container_volume | 88 |
creator | Azzouzi, Asma Steunou, Anne‐Soisig Durand, Anne Khalfaoui‐Hassani, Bahia Bourbon, Marie‐line Astier, Chantal Bollivar, David W. Ouchane, Soufian |
description | Summary
Two genes encoding structurally similar Copper P1B‐type ATPases can be identified in several genomes. Notwithstanding the high sequence and structural similarities these ATPases held, it has been suggested that they fulfil distinct physiological roles. In deed, we have shown that the Cu+‐ATPase CtpA is required only for the activity of cuproproteins in the purple bacterium Rubrivivax gelatinosus; herein, we show that CopA is not directly required for cytochrome c oxidase but is vital for copper tolerance. Interestingly, excess copper in the copA− mutant resulted in a substantial decrease of the cytochrome c oxidase and the photosystem under microaerobic and anaerobic conditions together with the extrusion of coproporphyrin III. The data indicated that copper targeted the tetrapyrrole biosynthesis pathway at the level of the coproporphyrinogen III oxidase HemN and thereby affects the oxidase and the photosystem. This is the first in vivo demonstration that copper, like oxygen, affects tetrapyrrole biosynthesis presumably at the level of the SAM and [4Fe‐4S] containing HemN enzyme. In light of these results and similar findings in Escherichia coli, the potential role of copper ions in the evolution of [4Fe‐4S] enzymes and the Cu+‐ATPases is discussed. |
doi_str_mv | 10.1111/mmi.12188 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01631832v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2945866401</sourcerecordid><originalsourceid>FETCH-LOGICAL-h2948-fdad1b7216ba89b5263046cd749a68a07c48bf7416d7a23a2e6c3167d576314e3</originalsourceid><addsrcrecordid>eNpd0s2O0zAQAOAIgdiycOAFkCUuIJRd_ySOc6wqoJG6gNAicbMmyaT1Kom7dlLaG0eOiLfgtfZJcLbLSuCLLfubGdmeKHrO6BkL47zrzBnjTKkH0YwJmcY8T9XDaEbzlMZC8a8n0RPvryhlgkrxODrhIkmUTNUs-r2wW2e31m03B2d6UhQFwX3lcDC2J6bGfjCNQU-GDRLoAZ0tTUWqf6LsGo-Rdm9q8EiW2H0g4AlMcIuODODWOJBQYMqzGN_cfP85v_w02W4coB8mOL_58YvYhnweS2d2Zgd7ssYWhlDAj_5p9KiB1uOzu_k0-vLu7eViGa8-vi8W81W84Xmi4qaGmpUZZ7IElZcpl4ImsqqzJAepgGZVosomS5isM-ACOMpKMJnVaSYFS1CcRq-PeTfQ6q0zHbiDtmD0cr7S0x5lASrBdyzYV0cbXuN6RD_ozvgK2xZ6tKPXTHCZ8ZCZB_ryP3plR9eHm0wqS1lOk0m9uFNj2WF9X__vhwVwfgTfTIuH-3NG9dQJOnSCvu0EfXFR3C7EH8Fpp_8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1327519042</pqid></control><display><type>article</type><title>Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu+‐ATPase mutant copA− of Rubrivivax gelatinosus</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><creator>Azzouzi, Asma ; Steunou, Anne‐Soisig ; Durand, Anne ; Khalfaoui‐Hassani, Bahia ; Bourbon, Marie‐line ; Astier, Chantal ; Bollivar, David W. ; Ouchane, Soufian</creator><creatorcontrib>Azzouzi, Asma ; Steunou, Anne‐Soisig ; Durand, Anne ; Khalfaoui‐Hassani, Bahia ; Bourbon, Marie‐line ; Astier, Chantal ; Bollivar, David W. ; Ouchane, Soufian</creatorcontrib><description>Summary
Two genes encoding structurally similar Copper P1B‐type ATPases can be identified in several genomes. Notwithstanding the high sequence and structural similarities these ATPases held, it has been suggested that they fulfil distinct physiological roles. In deed, we have shown that the Cu+‐ATPase CtpA is required only for the activity of cuproproteins in the purple bacterium Rubrivivax gelatinosus; herein, we show that CopA is not directly required for cytochrome c oxidase but is vital for copper tolerance. Interestingly, excess copper in the copA− mutant resulted in a substantial decrease of the cytochrome c oxidase and the photosystem under microaerobic and anaerobic conditions together with the extrusion of coproporphyrin III. The data indicated that copper targeted the tetrapyrrole biosynthesis pathway at the level of the coproporphyrinogen III oxidase HemN and thereby affects the oxidase and the photosystem. This is the first in vivo demonstration that copper, like oxygen, affects tetrapyrrole biosynthesis presumably at the level of the SAM and [4Fe‐4S] containing HemN enzyme. In light of these results and similar findings in Escherichia coli, the potential role of copper ions in the evolution of [4Fe‐4S] enzymes and the Cu+‐ATPases is discussed.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.12188</identifier><identifier>PMID: 23448658</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Adenosine triphosphatase ; Anaerobiosis ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Betaproteobacteria - drug effects ; Betaproteobacteria - genetics ; Betaproteobacteria - growth & development ; Betaproteobacteria - metabolism ; Biochemistry, Molecular Biology ; Biosynthesis ; Copper ; Copper - metabolism ; Copper - pharmacology ; Coproporphyrinogen Oxidase - genetics ; Coproporphyrinogen Oxidase - metabolism ; Coproporphyrins - metabolism ; DNA Transposable Elements ; Enzymes ; Gene Expression Regulation, Bacterial ; Genes ; Life Sciences ; Mutagenesis, Insertional ; Mutation</subject><ispartof>Molecular microbiology, 2013-04, Vol.88 (2), p.339-351</ispartof><rights>2013 Blackwell Publishing Ltd</rights><rights>2013 Blackwell Publishing Ltd.</rights><rights>Copyright Blackwell Publishing Ltd. Apr 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3643-2564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.12188$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.12188$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23448658$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01631832$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Azzouzi, Asma</creatorcontrib><creatorcontrib>Steunou, Anne‐Soisig</creatorcontrib><creatorcontrib>Durand, Anne</creatorcontrib><creatorcontrib>Khalfaoui‐Hassani, Bahia</creatorcontrib><creatorcontrib>Bourbon, Marie‐line</creatorcontrib><creatorcontrib>Astier, Chantal</creatorcontrib><creatorcontrib>Bollivar, David W.</creatorcontrib><creatorcontrib>Ouchane, Soufian</creatorcontrib><title>Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu+‐ATPase mutant copA− of Rubrivivax gelatinosus</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
Two genes encoding structurally similar Copper P1B‐type ATPases can be identified in several genomes. Notwithstanding the high sequence and structural similarities these ATPases held, it has been suggested that they fulfil distinct physiological roles. In deed, we have shown that the Cu+‐ATPase CtpA is required only for the activity of cuproproteins in the purple bacterium Rubrivivax gelatinosus; herein, we show that CopA is not directly required for cytochrome c oxidase but is vital for copper tolerance. Interestingly, excess copper in the copA− mutant resulted in a substantial decrease of the cytochrome c oxidase and the photosystem under microaerobic and anaerobic conditions together with the extrusion of coproporphyrin III. The data indicated that copper targeted the tetrapyrrole biosynthesis pathway at the level of the coproporphyrinogen III oxidase HemN and thereby affects the oxidase and the photosystem. This is the first in vivo demonstration that copper, like oxygen, affects tetrapyrrole biosynthesis presumably at the level of the SAM and [4Fe‐4S] containing HemN enzyme. In light of these results and similar findings in Escherichia coli, the potential role of copper ions in the evolution of [4Fe‐4S] enzymes and the Cu+‐ATPases is discussed.</description><subject>Adenosine triphosphatase</subject><subject>Anaerobiosis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Betaproteobacteria - drug effects</subject><subject>Betaproteobacteria - genetics</subject><subject>Betaproteobacteria - growth & development</subject><subject>Betaproteobacteria - metabolism</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biosynthesis</subject><subject>Copper</subject><subject>Copper - metabolism</subject><subject>Copper - pharmacology</subject><subject>Coproporphyrinogen Oxidase - genetics</subject><subject>Coproporphyrinogen Oxidase - metabolism</subject><subject>Coproporphyrins - metabolism</subject><subject>DNA Transposable Elements</subject><subject>Enzymes</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes</subject><subject>Life Sciences</subject><subject>Mutagenesis, Insertional</subject><subject>Mutation</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0s2O0zAQAOAIgdiycOAFkCUuIJRd_ySOc6wqoJG6gNAicbMmyaT1Kom7dlLaG0eOiLfgtfZJcLbLSuCLLfubGdmeKHrO6BkL47zrzBnjTKkH0YwJmcY8T9XDaEbzlMZC8a8n0RPvryhlgkrxODrhIkmUTNUs-r2wW2e31m03B2d6UhQFwX3lcDC2J6bGfjCNQU-GDRLoAZ0tTUWqf6LsGo-Rdm9q8EiW2H0g4AlMcIuODODWOJBQYMqzGN_cfP85v_w02W4coB8mOL_58YvYhnweS2d2Zgd7ssYWhlDAj_5p9KiB1uOzu_k0-vLu7eViGa8-vi8W81W84Xmi4qaGmpUZZ7IElZcpl4ImsqqzJAepgGZVosomS5isM-ACOMpKMJnVaSYFS1CcRq-PeTfQ6q0zHbiDtmD0cr7S0x5lASrBdyzYV0cbXuN6RD_ozvgK2xZ6tKPXTHCZ8ZCZB_ryP3plR9eHm0wqS1lOk0m9uFNj2WF9X__vhwVwfgTfTIuH-3NG9dQJOnSCvu0EfXFR3C7EH8Fpp_8</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Azzouzi, Asma</creator><creator>Steunou, Anne‐Soisig</creator><creator>Durand, Anne</creator><creator>Khalfaoui‐Hassani, Bahia</creator><creator>Bourbon, Marie‐line</creator><creator>Astier, Chantal</creator><creator>Bollivar, David W.</creator><creator>Ouchane, Soufian</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3643-2564</orcidid></search><sort><creationdate>201304</creationdate><title>Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu+‐ATPase mutant copA− of Rubrivivax gelatinosus</title><author>Azzouzi, Asma ; Steunou, Anne‐Soisig ; Durand, Anne ; Khalfaoui‐Hassani, Bahia ; Bourbon, Marie‐line ; Astier, Chantal ; Bollivar, David W. ; Ouchane, Soufian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h2948-fdad1b7216ba89b5263046cd749a68a07c48bf7416d7a23a2e6c3167d576314e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine triphosphatase</topic><topic>Anaerobiosis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Betaproteobacteria - drug effects</topic><topic>Betaproteobacteria - genetics</topic><topic>Betaproteobacteria - growth & development</topic><topic>Betaproteobacteria - metabolism</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biosynthesis</topic><topic>Copper</topic><topic>Copper - metabolism</topic><topic>Copper - pharmacology</topic><topic>Coproporphyrinogen Oxidase - genetics</topic><topic>Coproporphyrinogen Oxidase - metabolism</topic><topic>Coproporphyrins - metabolism</topic><topic>DNA Transposable Elements</topic><topic>Enzymes</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes</topic><topic>Life Sciences</topic><topic>Mutagenesis, Insertional</topic><topic>Mutation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azzouzi, Asma</creatorcontrib><creatorcontrib>Steunou, Anne‐Soisig</creatorcontrib><creatorcontrib>Durand, Anne</creatorcontrib><creatorcontrib>Khalfaoui‐Hassani, Bahia</creatorcontrib><creatorcontrib>Bourbon, Marie‐line</creatorcontrib><creatorcontrib>Astier, Chantal</creatorcontrib><creatorcontrib>Bollivar, David W.</creatorcontrib><creatorcontrib>Ouchane, Soufian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azzouzi, Asma</au><au>Steunou, Anne‐Soisig</au><au>Durand, Anne</au><au>Khalfaoui‐Hassani, Bahia</au><au>Bourbon, Marie‐line</au><au>Astier, Chantal</au><au>Bollivar, David W.</au><au>Ouchane, Soufian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu+‐ATPase mutant copA− of Rubrivivax gelatinosus</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2013-04</date><risdate>2013</risdate><volume>88</volume><issue>2</issue><spage>339</spage><epage>351</epage><pages>339-351</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
Two genes encoding structurally similar Copper P1B‐type ATPases can be identified in several genomes. Notwithstanding the high sequence and structural similarities these ATPases held, it has been suggested that they fulfil distinct physiological roles. In deed, we have shown that the Cu+‐ATPase CtpA is required only for the activity of cuproproteins in the purple bacterium Rubrivivax gelatinosus; herein, we show that CopA is not directly required for cytochrome c oxidase but is vital for copper tolerance. Interestingly, excess copper in the copA− mutant resulted in a substantial decrease of the cytochrome c oxidase and the photosystem under microaerobic and anaerobic conditions together with the extrusion of coproporphyrin III. The data indicated that copper targeted the tetrapyrrole biosynthesis pathway at the level of the coproporphyrinogen III oxidase HemN and thereby affects the oxidase and the photosystem. This is the first in vivo demonstration that copper, like oxygen, affects tetrapyrrole biosynthesis presumably at the level of the SAM and [4Fe‐4S] containing HemN enzyme. In light of these results and similar findings in Escherichia coli, the potential role of copper ions in the evolution of [4Fe‐4S] enzymes and the Cu+‐ATPases is discussed.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>23448658</pmid><doi>10.1111/mmi.12188</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3643-2564</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 2013-04, Vol.88 (2), p.339-351 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01631832v1 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Free Content |
subjects | Adenosine triphosphatase Anaerobiosis Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Betaproteobacteria - drug effects Betaproteobacteria - genetics Betaproteobacteria - growth & development Betaproteobacteria - metabolism Biochemistry, Molecular Biology Biosynthesis Copper Copper - metabolism Copper - pharmacology Coproporphyrinogen Oxidase - genetics Coproporphyrinogen Oxidase - metabolism Coproporphyrins - metabolism DNA Transposable Elements Enzymes Gene Expression Regulation, Bacterial Genes Life Sciences Mutagenesis, Insertional Mutation |
title | Coproporphyrin III excretion identifies the anaerobic coproporphyrinogen III oxidase HemN as a copper target in the Cu+‐ATPase mutant copA− of Rubrivivax gelatinosus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coproporphyrin%20III%20excretion%20identifies%20the%20anaerobic%20coproporphyrinogen%20III%20oxidase%20HemN%20as%20a%20copper%20target%20in%20the%20Cu+%E2%80%90ATPase%20mutant%20copA%E2%88%92%20of%20Rubrivivax%20gelatinosus&rft.jtitle=Molecular%20microbiology&rft.au=Azzouzi,%20Asma&rft.date=2013-04&rft.volume=88&rft.issue=2&rft.spage=339&rft.epage=351&rft.pages=339-351&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.12188&rft_dat=%3Cproquest_hal_p%3E2945866401%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1327519042&rft_id=info:pmid/23448658&rfr_iscdi=true |