An iterative approach for cone complementarity problems for nonsmooth dynamics

Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comput. Optimization Appl 2010-10, Vol.47 (2), p.207-235
Hauptverfasser: Anitescu, Mihai, Tasora, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 2
container_start_page 207
container_title Comput. Optimization Appl
container_volume 47
creator Anitescu, Mihai
Tasora, Alessandro
description Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is proved to be convergent under fairly standard assumptions and is shown by our tests to scale well up to 500,000 contact points and more than two millions of unknowns.
doi_str_mv 10.1007/s10589-008-9223-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01631636v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2139332131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-fba562e61947c182306d02ae5e2b271c65d4ec7df4e024a017f7d2eca0049aac3</originalsourceid><addsrcrecordid>eNp1kdFOwyAUhonRxDl9AO8a77yoHiiFcrks6kyW7EavCaPUdllhAluyt_FZfDJpatyVCYEA3_9zfg5CtxgeMAB_DBjKSuQAVS4IKXJ6hia45EVOKkHP0QQEYTkDKC7RVQgbABC8IBO0mtmsi8ar2B1MpnY775Rus8b5TDtr0tTvtqY3NirfxWOW7tdpHwbi-8s6G3rnYpvVR6v6TodrdNGobTA3v-sUvT8_vc0X-XL18jqfLXNNqzLmzVqVjBiGBeUaV6QAVgNRpjRkTTjWrKyp0bxuqAFCFWDe8JoYrQCoUEoXU3Q3-roQOxl0yqDbVLE1Osr0IxVhIkH3I9Sqrdz5rlf-KJ3q5GK2lMMZYFakwQ74ZJgSfu5NiHLj9t6mDJKXUImSFixBeIS0dyF40_y5Yhhe5XLsg0wFyKEPkiYNGTUhsfbD-JPx_6Ifq5KLKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750895436</pqid></control><display><type>article</type><title>An iterative approach for cone complementarity problems for nonsmooth dynamics</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Anitescu, Mihai ; Tasora, Alessandro</creator><creatorcontrib>Anitescu, Mihai ; Tasora, Alessandro ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is proved to be convergent under fairly standard assumptions and is shown by our tests to scale well up to 500,000 contact points and more than two millions of unknowns.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-008-9223-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; COMPUTERIZED SIMULATION ; CONES ; Convex and Discrete Geometry ; Engineering Sciences ; FRICTION ; ITERATIVE METHODS ; Management Science ; Mathematical analysis ; MATHEMATICAL METHODS AND COMPUTING ; Mathematics ; Mathematics and Statistics ; Mechanics ; Methods ; Numerical analysis ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Ordinary differential equations ; Simulation ; Statistics ; Structural mechanics ; Studies ; Topological manifolds</subject><ispartof>Comput. Optimization Appl, 2010-10, Vol.47 (2), p.207-235</ispartof><rights>US Government 2008</rights><rights>Springer Science+Business Media, LLC 2010</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-fba562e61947c182306d02ae5e2b271c65d4ec7df4e024a017f7d2eca0049aac3</citedby><cites>FETCH-LOGICAL-c485t-fba562e61947c182306d02ae5e2b271c65d4ec7df4e024a017f7d2eca0049aac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-008-9223-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-008-9223-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01631636$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1008269$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Anitescu, Mihai</creatorcontrib><creatorcontrib>Tasora, Alessandro</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>An iterative approach for cone complementarity problems for nonsmooth dynamics</title><title>Comput. Optimization Appl</title><addtitle>Comput Optim Appl</addtitle><description>Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is proved to be convergent under fairly standard assumptions and is shown by our tests to scale well up to 500,000 contact points and more than two millions of unknowns.</description><subject>Approximation</subject><subject>COMPUTERIZED SIMULATION</subject><subject>CONES</subject><subject>Convex and Discrete Geometry</subject><subject>Engineering Sciences</subject><subject>FRICTION</subject><subject>ITERATIVE METHODS</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Ordinary differential equations</subject><subject>Simulation</subject><subject>Statistics</subject><subject>Structural mechanics</subject><subject>Studies</subject><subject>Topological manifolds</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kdFOwyAUhonRxDl9AO8a77yoHiiFcrks6kyW7EavCaPUdllhAluyt_FZfDJpatyVCYEA3_9zfg5CtxgeMAB_DBjKSuQAVS4IKXJ6hia45EVOKkHP0QQEYTkDKC7RVQgbABC8IBO0mtmsi8ar2B1MpnY775Rus8b5TDtr0tTvtqY3NirfxWOW7tdpHwbi-8s6G3rnYpvVR6v6TodrdNGobTA3v-sUvT8_vc0X-XL18jqfLXNNqzLmzVqVjBiGBeUaV6QAVgNRpjRkTTjWrKyp0bxuqAFCFWDe8JoYrQCoUEoXU3Q3-roQOxl0yqDbVLE1Osr0IxVhIkH3I9Sqrdz5rlf-KJ3q5GK2lMMZYFakwQ74ZJgSfu5NiHLj9t6mDJKXUImSFixBeIS0dyF40_y5Yhhe5XLsg0wFyKEPkiYNGTUhsfbD-JPx_6Ifq5KLKA</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Anitescu, Mihai</creator><creator>Tasora, Alessandro</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope></search><sort><creationdate>20101001</creationdate><title>An iterative approach for cone complementarity problems for nonsmooth dynamics</title><author>Anitescu, Mihai ; Tasora, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-fba562e61947c182306d02ae5e2b271c65d4ec7df4e024a017f7d2eca0049aac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>COMPUTERIZED SIMULATION</topic><topic>CONES</topic><topic>Convex and Discrete Geometry</topic><topic>Engineering Sciences</topic><topic>FRICTION</topic><topic>ITERATIVE METHODS</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Ordinary differential equations</topic><topic>Simulation</topic><topic>Statistics</topic><topic>Structural mechanics</topic><topic>Studies</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anitescu, Mihai</creatorcontrib><creatorcontrib>Tasora, Alessandro</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Comput. Optimization Appl</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anitescu, Mihai</au><au>Tasora, Alessandro</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An iterative approach for cone complementarity problems for nonsmooth dynamics</atitle><jtitle>Comput. Optimization Appl</jtitle><stitle>Comput Optim Appl</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>47</volume><issue>2</issue><spage>207</spage><epage>235</epage><pages>207-235</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is proved to be convergent under fairly standard assumptions and is shown by our tests to scale well up to 500,000 contact points and more than two millions of unknowns.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10589-008-9223-4</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Comput. Optimization Appl, 2010-10, Vol.47 (2), p.207-235
issn 0926-6003
1573-2894
language eng
recordid cdi_hal_primary_oai_HAL_hal_01631636v1
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Approximation
COMPUTERIZED SIMULATION
CONES
Convex and Discrete Geometry
Engineering Sciences
FRICTION
ITERATIVE METHODS
Management Science
Mathematical analysis
MATHEMATICAL METHODS AND COMPUTING
Mathematics
Mathematics and Statistics
Mechanics
Methods
Numerical analysis
Operations Research
Operations Research/Decision Theory
Optimization
Ordinary differential equations
Simulation
Statistics
Structural mechanics
Studies
Topological manifolds
title An iterative approach for cone complementarity problems for nonsmooth dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T12%3A21%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20iterative%20approach%20for%20cone%20complementarity%20problems%20for%C2%A0nonsmooth%20dynamics&rft.jtitle=Comput.%20Optimization%20Appl&rft.au=Anitescu,%20Mihai&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2010-10-01&rft.volume=47&rft.issue=2&rft.spage=207&rft.epage=235&rft.pages=207-235&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-008-9223-4&rft_dat=%3Cproquest_osti_%3E2139332131%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=750895436&rft_id=info:pmid/&rfr_iscdi=true