Structure–Property Relationships for Exciton and Charge Reorganization Energies of Dipolar Organic Semiconductors: A Combined Valence Bond Self-Consistent Field and Time-Dependent Hartree-Fock and DFT Study of Merocyanine Dyes

We present an analysis of the optoelectronic properties of merocyanine dyes by means of valence bond self-consistent field (VBSCF), time-dependent Hartree-Fock (TD-HF), density functional theory (DFT), and high-level ab initio calculations. The electronic structure of merocyanines can be described a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-08, Vol.119 (31), p.17602-17611
Hauptverfasser: Brückner, Charlotte, Walter, Christof, Stolte, Matthias, Braïda, Benoît, Meerholz, Klaus, Würthner, Frank, Engels, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an analysis of the optoelectronic properties of merocyanine dyes by means of valence bond self-consistent field (VBSCF), time-dependent Hartree-Fock (TD-HF), density functional theory (DFT), and high-level ab initio calculations. The electronic structure of merocyanines can be described as a superposition of two resonance structures, a neutral one and a zwitterionic one. Calculated valence bond (VB) weights for these resonance structures demonstrate the importance of strong accepting groups when increasing the weight of the zwitterionic structures of different merocyanines. The dependence of exciton and charge reorganization energies on VB weights’ composition is analyzed, demonstrating that the special case of equal contributions of both structures, the so-called cyanine limit, goes along with minimal exciton and charge reorganization energies. For the latter, it is shown that the external (outer-sphere) reorganization energy plays a crucial role. Furthermore, a careful investigation of the excited-state behavior of merocyanines indicates that a possible excited-state torsion might be another important parameter for merocyanine-based optoelectronic devices, whereas internal (inner-sphere) charge reorganization energies of a variety of merocyanines are in a typical range for molecular semiconductors.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.5b06206